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ABSTRACT

Two-dimensional and three-dimensional statistical rmicromechanical damage

models with randomly located interacting microcracks are presented to investigate the

overall nonlinear mechanical responses of microcrack-weakened brittle solids. The

macroscopic stress-strain relations of elastic solids with interacting micro-cracks are

micromechanically derived by taking the ensemble average over all possible realizations.

Several different approximate analytical solutions of a two-crack interaction model are

introduced to account for micro--crack interaction among many randomly oriented and

located microcracks. The overall elastic-damage compliances of microcrack-weakened

brittle solids are also derived by further taking the volume average of the ensemble-

averaged stress-strain relations over the entire material mesostructural domain. Some

special examples are investigated by using the proposed methods. At variance with exist-

ing phenomenological damage models, the proposed framework does not employ any

fitted "material parameters". "Cleavage 1" microcrack growth and "evolutionary

damage models" within the proposed context are also presented.
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PART I

Effective Elastic Moduli of Two-Dimensional

Brittle Solids with Interacting Microcracks.

I : Basic Formulations

1.0. Abstract

Statistical micromechanical formulations are presented to investigate effective elastic moduli

of two-dimensional brittle solids with interacting slit microcracks. The macroscopic stress-strain

relations of elastic solids with interacting microcracks are micromechanically derived by taking

the ensemble average over all possible realizations which feature the same material microstruc-

tural geometry, characteristics, and loading conditions, Approximate analytical solutions of a

two-microcrack interaction problem are introduced to account for microcrack interaction among

many randomly oriented and located microcracks. The overall elastic-damage compliances of

microcrack-weakened brittle solids under uniaxial and biaxial loads are also derived. Therefore,

stationary statistical micromechanical formulation is completed. Moreover, some special cases are

investigated by using the proposed framework. At variance with existing phenomenological con-

tinuum damage models, the proposed framework does not employ any fitted "material parameters".
"Cleavage 1" microcrack growth and "evolutionary damage models" within the proposed context

will be presented in Part II of this - ries. It is emphasized that microstructural statistical informa-

tions are already embedded in the proposed ensemble-averaged equations and, therefore, no Monte

Carlo simulations are needed.
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1.1. Introduction

The nonlinear mechanical responses of damaged solids due to the existence, growth, and nu-

cleation of microdefects (such as microcracks and microvoids) are of significant importance to

engineers, and have been t' e subject of many investigations. See Krajcinovic (1989) for a liter-

ature review on damage mechanics. For brittle materials (e.g., concrete, rocks and ceramics), in

particular, microcracks often control overall deformation and failure mechanisms. To date, the

only exact results derived for microcrack-weakened brittle solids are for h+ilute microcrack con-

centrations, where microcrack interactions are entirely neglected (i.e., "Taylor's models"). On

the other hand, "effective medium methods" were proposed in the literature to account for inter-

action effects of microcracks. For example, the "self-consistent method" [Hill (1965)] was first

applied to microcrack-weakened solids by Budiansky and O'Connell (1976) with special attention

directed to perfectly randomly distributed and weakly interacting microcracks. The self-consistent

method was further developed by Horii and Nemat-Nasser (1983) to take into account the effects

of closed microcracks undergoing frictional sliding. Christensen and Lo (1979) proposed a three-

phase "generalized self-consistent model". The "differential scheme" was investigated by Roscoe

(1952, 1973), McLaughlin (1977), and Hashin (1988). Further, the "Mori-Tanaka method" was

developed by Mori and Tanaka (1973), Benveniste (1986), and Zhao, Tandon and Weng (1989).

Some comparisons and assessments for the self-consistent method, the generalized self-consistent

method, the Mori-Tanaka method, and/or the differential scheme were also presented by Horil and

Sahasakmontri (1990), Laws and Dvorak (1987), Nemat-Nasser and Hori (1990), and Christensen

(1990, for pure shear load only). It is noted that the foregoing effective medium methods are only

valid for low microcrack concentrations since they do not depend on locations of microcracks.

Ah qf the aforementioned work can be categorized as "stationary" micromechanical models

since all microcracks are assumed to be stationary; i.e., no microcracks are allowed to grow or

nucleated during loading histories. For a constitutive theory to possess predictive capability, how-

ever, an "evolutionary" micromechanical damage model is warranted to account for "cleavage 1"

(pre-existing) microcrack growth and/or "cleavage 2" (new) microcrack nucleation. In the current

literature, there ar- indeed a number of micromechanical "evolutionary" damage models available.

See, e.g., Krajcinovic and Fanella (1986). Fanella and Krajcinovic (1988), and Ju (199 1b) by using

the "Taylor's model"; as well as Sumarac and Krajcinovic (1987, 1989), Krajcinovic and Sumarac

(1989), Ju (1991a), Ju and Lee (1991), and Lee and Ju (1991) by using the self-consistent method.

2



"hen microcrack concentrations are higher and microcrack spacings are closer, strong micro-

crack interactions occur and effective medium theories arý no longer appropriate. Emanating from

* this viewpoint, excellent strong microcrack interaction models were proposed by Gross (1982),

Horii and Nemat-Nasser (1985), Hori and Nemat-Nasser (1987) for two-dimensional determin-

istic microcracks, and by Kachanov and Montagut (1986), Kachanov (1987), Chudnovsky et al.

(1987ab), and Kachanov and Laures (1989) for two- and three-dimensional deterministic arbitrary
0 microcrack arrays. The foregoing work, nevertheless, are only stationary strong microcrack inter-

action models. Moreover, the work due to Kachanov (1987), Kachanov and Laures (1989) rely on

Monte Carlo simulations of deterministic microcrack arrays, and depend on heavy numerical corn-
putations of stress "transmission factors". Therefore, it is desirable to develop simple statistical

micromechanical theories to account for interactions among many randomly located and oriented

microcracks. Furthermore, "cleavage 1" microcrack growth models are needed under the condition

of microcrack interaction.

The purpose of the present work (Part I and Part II) is to establish a statistical micromechanical

framework for deriving "evolutionary" damage models and corresponding constitutive equations

for brittle solids containing many interacting, randomly distributed slit microcracks. The proposed

statistical framework considers the probability and conditional probability density functions of mi-
crocrack locations, orientations, lengths, and relative configurations. See Batchelor (1970), Batch-

elor and Green (1972), Hinch (1977), Willis and Acton (1976), Chen and Acrivos (1978a,b) for
references. In addition, the ensemble-volume averages of stresses, strains and compliances are sys-

tematically constructed based on analytical micromechanics solutions and probability functions.

It is emphasized that the proposed method is very different from that proposed by Hudson (1980,

1981, 1986). Though using the ensemble average approach, Hudson's method is based on a second-

order stiffness theory and therefore leads to irrational behavior for solids with moderate or high
microcrack concentrations [see Sayers and Kachanov (199 1)]. The proposed approach is free from

this anomaly.

A brief outline of this work is as follows. In Section 2, an ensemble-average approach to de-
Syrive damaged stress-strain relations is introduced. Approximate closed-form analytical solutions

are subsequently presented for the interaction problem of two arbitrarily located and oriented (but

non-intersecting) microcracks. The overall elastic moduli of a statistically representative volume

element are then derived. In Section 3, applications are made to a number of special cases. In par-

ticular, for the dilute microcrack concentration case, the present approach recovers the well-known

3



Taylor's model by neglecting interactions among microcracks. When all microcracks are open and

perfectly randomly distributed, the proposed approach shows that the overall compliance matrix

becomes isotropic. A comparison between the present method and the self-consistent method is

also discussed in this isotropic damage case.

4



1.2. An ensemble-average approach to microcrack interaction and effective moduli

1.2.1. Background

Consider a statistical realization within a statistical RVE (in the probability space) of a microcrack-

weakened solid. The volume of the statistical RVE is V, and the exterior surface is subjected to

prescribed traction "°. Let a and n be the average microcrack radius and the average number of

microcracks per unit volume, respectively. A typical avenue to describe mechanical responses of a

statistical RVE is to relate the volume-averaged strain ? to the volume-averaged stress a. It is well

known that

""=SO:& + L, ( ( 9ul® n + n ® Iu]) dS1  (1)

where S0 is the virgin elastic compliance tensor for the matrix material; Jul and n are the micro-

crack opening displacement vector and the unit normal vector on discontinuity surface, respe,.tive'y.

Moreover, S, represents the union of all discontinuity (microcrack) surfaces (see Fig. 1).

Following the common assumption " z 0O", the microcrack-induced strain reads

V j: (ul (&u® n + n 0 Ju) dS 1  (2)

1.2.2. Ensemble average of microcrack-induced strains

In this section, a systematic approach of forming the ensemble-averaged strains and microcrack

interaction-induced local stress perturbations are presented. The basic idea behind this approach

is that the local constitutive relation at a typical point within a statistical RVE of a microcrack-

weakened solid should be obtained by averaging over the ensemble of all statistical realizations,

including the locations, orientations, lengths and relative configurations of randomly distributed mi-

crocracks. This approach was first applied to the study of fluid suspensions; see Batchelor(1970),

Batchelor and Green (1972), and Hinch(1977). The ensemble average approach was later applied

to interacting inclusions of solid composite materials by Willis and Acton (1976), and Chen and

Acrivos (1978a,b). It is emphasized that local displacements, strains and stresses vary with po-

sitions within a RVE. An average over the values of physical quantities occurring in a very large

* number of realizations is an ensemble average, which will be denoted by angle brackets.

Let us consider a two-phase composite statistical RVE (composed of a linear elastic brittle

matrix and inclusions) subjected to external load fo"0. The local constitutive law at a material point

x may be expressed as

C(x) = S0 : o'(x) + C(x, C) (3)

5



where e and o are the local strain and stress, respectively. Furthermore, c' is a perturbed strain

function which is zero if x is a point in the matrix and is non-zero if x is a point in An inclusion.

Obviously, c" depends on the full configuration of all inclusions (denoted by C). The constitutive

law (3) can be easily statistically (ensemble) averaged:

(C)(x) = S0 : (a)(x) + (C')(x) (4)

In addition, the ensemble-average of E' at x (considered to be non-zero because it lies in an

inclusion centered at xj) is (assuming inclusions do not intersect one another):

(W)(x) = (E*d)(xlxl)/'(x) d (5)

where Qj is the domain of a single inclusion and the integral is performed over the finite domain

such that x can lie in an inclusion centered at x1. Further, f(xj) is the probability density function

(PDF) for a single inclusion being centered at xj, and (c'(xlxj)) is the perturbed strain at x averaged

over the subclass of realizations having an inclusion centered at xi.

At this stage, it is reasonable to restrict composite solids to be locally homogeneous [Hinch

(1977)]. That is, all PDF do not vary under small translation on a macroscopic length scale. With

this assumption, f'xl) in (5) may be regarded as a constant in the integration and equal to f(x).

The statistical "local homogeneity" also allows a small translation of x - x, in the two arguments

of (c'(xjxj)). Namely, we may equate (c*(xlxl)) to (c*(x + (x - x1)jx)). Thus, Eq. (5) becomes

(C*)W = fxj (W (x'lx)) dl7 ' (6)

where x' - 2x - xj, and the integral extends over all points x' within an inclusion centered at the

position x. By divergence theorem, we have

(C*)(x) = f(x) W (u ® n + n o u)(x'Ix) dS (7)

In the extreme case where inclusions become line microcracks, Eq. (7) can be recast as

()x = fx) j (Jul ® n + n ® Jul) (x'Ix, G)f(9) d~ dS (8)
Ig

where Q - (a, n) characterizes the microcrack length and orientation in addition to the information

on location x; f(Q) is the probability function for a microcrack with geometry Q. In what follows,

for simplicity of demonstration, attention will be focused on two-dimensional plane strain (or plane

6



stress) problems. Accordingly, Q defines the geometric domain (a. 0), where a denotes one half

of the microcrack length and 0 denotes the angle between the global (reference) coordinate and

the local (microcrack) coordinate with 0 < 0 < 7r; see Fig. 2. It is well known that for a line

microcrack in an infinite linear elastic isotropic solid, the normal and tangential microcrack opening

displacements take the form

* { 111411} 4(l - v') ~,~Ti (9)

where E and v are the Young's modulus and Poisson's ratio of the virgin elastic solid, respectively; p

and q are, the normal and shear external stresses projected on microcrack surface in local coordinate

system (see Fig. 2). For plane stress problems, the factor (1 - v2) is removed from (9).

By substituting (9) into (8) and using the Voigt's notation for strains, we arrive at

(e*)() {Wj Cfx (7r(I Ev) a (T) f(a, 0) dOda (10)C;• (2:12)

where A and O are the integration domains of microcrack lengths and orientations (for open mi-

crocracks), respectively. Further, g is the transformation matrix relating the global and local coor-

dinates, and T is local stress vector:

[ 2sin' 0 - sin 201
gl= 2 2cos2 0 sin 2 ; T= fP (11)

-2sin2O 2cos201

Following the same arguments in deriving (e*), the ensemble-average stress field (in the local

coordinates) can be shown to be

(T) P' I+{ T-+ (12)

where T°' is the unperturbed local stress field due to remote loading, and (I) is the ensemble

average of the perturbation in local stress field due to pairwise microcrack interactions:

(T) (x, a, 0) (T)(x, a, Oix,, at, 01)f (x, al, 01 Ix, a, O) dOldaldx (13)

Here (T)(x, a, 0Ix1, a,, 01) is the stress perturbation of a microcrack centered at x with (a, O) av-

eragetd over the subclass of realizations which have a microcrack centered at x, with (a,, 01). In

addition, f(xl, a,, 01 Ix, a, 0) is the conditional probability function for finding a microcrack cen-

tered at x, with (al, 01) given one microcrack centered at x with (a, 0). Since only the ensemble
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average is considered, the integral in (13) is performed over the domain of a probabilistic (not phys-

ical) RVE ( in the probability space) which is characterized by the two-point probability function

f(xi, a,, 01 Ix, a, 0). Thus, the shape of the physical specimen plays no role here. The active (open)

integration domain E also depends on loading conditions and ranges of microcrack interactions.

Assuming that microcracks do not intersect one another and that reasonable randomness holds

(Hinch (1977)), then f(xi, a,, 01 Ix, a, 0) is simplified to f(xj, a,, 01). Further, by the local homo-

geneity assumption, f(xi. a,, 91) becomes approximately f(x, a, 0). Therefore, Eq. (13) can be

approximated by the following expression:

(i')(x,a,O) = f(x,a,0) ](T}(xa, O Ix1,a ,) dODda1dx1 (14)

The assumption that microcracks do not intersect one another certainly introduces some unknown

errors. However, there is no analytical solutions available to accommodate interactions among

pairs of arbitrarily intersected microcracks. Therefore, following usual simplification made in the

literature [Kachanov (1987), Kachanov and Laures (1989)], we do not consider the cases when

microcracks intersect.

1.2.3. Approximate analytical solutions of two-microcrack interaction prob:m

Due to enormous complexity, it is practically impossible to obtain closed-form analytical so-

lutions of strongly interacting many-microcrack problems. The formulation of arbitrarily located

and oriented many-microcrack interaction problems is actually quite simple; see, e.g., Kachanov

(1987), and Kachanov and Laures (1989). Nevertheless, the formulation involves 2N (if two-

dimensional) or 3N (if three-dimensional) linear system of equations, where N designates the

number of microcracks in an RVE (say, A'= 100). Clearly, numerical solutions of many-microcrack

interaction problems are suitable for the Monte Carlo simulation approach mentioned earlier in Sec-

tion 1. By contrast, the present work intends to construct closed-form explicit stress solutions (T)

and analytical expressions of microcrack-induced strains (e*) and compliances (S*) for interacting

microcracks within the framework of the ensemble-average approach.

In order to construct useful explicit analytical solutions and to gain simple physical insight

for interacting microcracks, multiple-microcrack stress reflections will be neglected as the first

approximation. Namely, we will only consider local stress perturbations based on many (arbitrary)

pairwise microcrack interactions. The extension to the higher-order ensemble-average formulation

will be presented in Section 4 of Part II.
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The exact analytical solutions of the boundary-value problem of two arbitrarily located and
oriented microcracks embedded in an infinite linear elastic isotropic solid are not yet available (ex-
cept for some special configurations such as collinear microcracks). However, approximate analyt-
ical solutions were proposed by several investigators [e.g., Horii and Nemat-Nasser (1985), Hori
and Nemat-Nasser (1987), Chudnovsky and Kachanov (1983), Chudnovsky et al. (1987a,b), and
Kachanov (1987)]. In the present wnrk, the "pseudo-traction" concept is adopted to find approxi-
mate analytical solutions of the two-microcrack interaction problem. For mathematical simplicity,
only thefirst term of Taylor's expansion of the local stress field will be used to represent the average

stress across the microcrack line.

The local coordinate systems 1 and 2 employed in the two-microcrack interaction problem are

given in Figures 3(a) and 3(b). The two microcracks have lengths 2al and 2a 2, respectively. The
y'- and y'-directions are set to be normal to the microcrack lines C, and C2. The original two-

microcrack problem is decomposed into a homogeneous problem and two sub-problems 1 and 2;
see Fig. 4. In the homogeneous problem, an infinite solid without any microcrack is subjected to
applied stresses at infinity. In the sub-problem j (j = 1, 2), an infinitely extended solid under zero
remote stress at infinity has only one microcrack j, on which the boundary conditions are

-P, +p¢+5  =0 ; -qj+q +qij =0 onCa, j=1,2 (15)

The quantities 15 and 4, are to be determined in such a way that all boundary conditions of the
original problem are satisfied. In the subproblem j, the "exact" stresses are given by [Sneddon and

Lowengrub (1969)]
a= pj(-1 + El - FI)+qj(2Gj - HI)

&22 = pj(-I + + F.,) +qHj (16)

C 21 = pUH, + qj(-1 + Ej - Fj)

where r- 0,• +O0.i
Ej r-c osO( -c 0 . )

ra-2  3

F r,) sin 0jo sin 3 (0I + 0j2)( r Ij + 20'/') (17)

G. - r sin(0jo -11+0j2
Vr. Ir2 2

ra2  3Hj )1/ sin 0.j0 cos (j,+ 032)
(rjlr,2)3/2 2 (OJ+
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See Figure 3 for the definitions of rj1, rj2, Oj and 0)2.

In order to satisfy the original boundary conditions (15), it follows that

P1 i#j ; i,3 = 1,2 (no sum) (18)

where e7(,) andke•(0 are the twounit base vectors forthe jth local coordinate system but are expressed

in terms of the ith local coordinate components. The subscript i signifies that a quantity is referred

to the (xý, y4) coordinate system. Substitution of Eq. (16) into Eq. (18) yields the local stresses for

two mictocracks:{1 0 0 al 02 P1 Pm1
1100 0304I Jqt q0

' 05 06 a3 4 ql + 1 qcr -• TI-2 + T01_ (9

2 5a6 0 P20 (19)
q2 07 Q8 0 q2 q2q

where

oa = - I + E2 + F2 cos 20 +/H2 sin 2ý ; U2 = 2G 2 sin2 0 +/H2 cos 20 - (I - E2 + F2) sin 20

a3 =/H2 cos 2¢ - F2 sin 2¢ ; a4 = (G2 - H2) sin 20 - (1 - E2 + F2) cos 2( (20)
a5 = -l1 + E + F, cos20 - H, sin2o ; o6 = 2G, sin2 0 + H, cos 20 + (I - El + F1 ) sin 2#

07 = Hi cos 20 + Fi sin 2q ; as = -(GI - HI) sin 20 - (1 - El + FI) cos 20

and 0 = 010 - 020. It is noteworthy that the "microcrack interaction matrix" cr in Eq. (19) actually

corresponds to the "transmission factor" matrix A in Kachanov (1987). In addition, it is convenient

to define T,. - 2 E (pi , qj, p2, q2)T, T' 2 = (p', qjO, p2O, qo ))T and Ti -2 =- (fl , q1, A2, 42)T. Since

T,_ 2 = T- 2 + t - 2, one can solve TPI_-2 from Eq. (19):

"T-= (I of- T'j 2  (21)

The comparison of the stress transmissionfactors obtained by using the simple "first term" ap-

proximation (A) and the exact solutions (A,.) for two collinear microcracks is given in Appendix I

for various normalized microcrack-tip distance ratios. When d = 0.25, it means that the ratio of

the two microcrack-tip spacing to the microcrack size (2a) is 0.25. It is noted that A =- I when

microcrack interaction is totally neglected. From Table 2 in Appendix I, it is observed that the

simple "first term" approximation is quite acceptable in general except when two microcrack tips

are really close to each other (i.e., when d < 0.1). It is emphasized that the spatial location of the

10



second microcrack given the first microcrack is random. Therefore, the errors (in Table 2) asso-
ciated with the proposed approximate analysis should be statistically averaged over all possible

realizations.

Let us recall that Tr = (fl, l )T and define KI as the first tworowsof the matrix [ot. (I - a•].

Therefore, from Eq. (21), we have

1=K -To 2  (22)

We can now substitute Eq. (22) into (14) and (12) to find the ensemble-average stress of a primary
mnicrocrack located at x over all possible positions and orientations (xj and 01) of the second neigh-
boring microcrack. In addition, the local and global remote stresses T1 2 and -r' are related by the

following transformation matrix K2:

r0 sin2 0 9Cos 2 0 - sin 20
iqC -j sin 20 sin 20 cos 20 (2

P2' sin(0 + ) cos2(+ ) - sin 2(0 + q) '. =2
q2 -- sin 2(0+,) + sin 2(0 +t) cos 2(0+q6) +r

Therefore, Eq. (22) can be rephrased as

t = K1. K2 K- (24)

where K _= KI • K2. The detailed explicit components of matrix K are given in Appendix II.

Remark 2.1. It appears that there are some typo-errors in Sneddon and Lowengrub's (1969)
solutions. Eqs. (16) and (17) are the correct formulas after the problem is resolved. v

1.2.4. Overall moduli of brittle solids with interacting microcracks

By substituting Eqs. (24) and (22) into Eq. (12) and assuming that x and (a, 0) are statistically

independent, one obtains the following expression for the ensemble-average stresses:

(T) = (To + t') = (Ko + f(x)f(a, 0)(K)) "too (25)

where T' =_ Ko . roo, and

= [ sin 20 cos' 0 -sin 20] (26)K -½sin20 ½sin20 cos 20

(K) JK rdr dOio d02o da2  (27)

11



Substitution of (25) into (10) then yields the ensemble-average damage-induced strain vector:

(e*)(x) = ") + (S*2 ) }.- = (S') - (28)

where
(1) - l- E f j2jg. Kof(a, 0) dO da (29)

(S*2) = f(x) La2 g. (K)f 2(a, 0) dO da (30)

Clearly, (S*) is the ensemble-average damage-induced compliance matrix. f(x) and f(a, 0) de-

pend on material microstructures and loading conditions, and should be specified by experimental

observations (e.g., by scanning electron microscopy or computerized tomography).

In what follows, as an illustration for deriving an explicit form of overall moduli of micro-

cracked solids, we consider the special case in which: (1) f(a, 0) = f(a)f(0), (2) microcrack

orientation is perfectly random (i.e., f(O) = I/7r), (3) the initial microcrack radius a is a constant,

and (4) f(x) satisfies

j f2(x) dA f {ff(x)dA}I/A (31)

Moreover, it is realized that

L f(x) dA = N (32)

where N is the total number of microcracks within an RVE (with area A). Since statistical ho-

mogeneity (in the probability space) is assumed, the volume-average coincides with the ensemble-

average. The volume-average (denoted by an overline) of (28) over an RVE thus takes the form

Ee* - I g - Ko dO +0'-• g.- (k) dO •r° (33)

where

(k) j_ I K rdrdOjod02o (34)

and "a is the active (open) probabilistic integration domain for variables r, 010, and 020. The effective

radius r has been normalized with respect to the microcrack radius a. Further, w = Na2 na 2

t/fr is a measure of microcrack concentrations. It is emphasized that our definition of microcrack

concentration w differs from the commonly used definition (:;) by a multiplier 7r [see Budiansky

and O'Connell (1976)]. The integration domains 0 and - also depend on loading conditions and

range of microcrack interactions.
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By substituting Eq. (33) into the volume-average of Eq. (4), we finally obtain the following

ensemble-volume averaged macroscopic constitutive relation kin Voigt's notation):

(e) = (S) . rc (35)

where

(S) = So + (Sol) + (S"2) (36)

That is, (S) is the ensemble-volume averaged overall effective compliance matrix of a microcracked

brittle solid. Specifically, under the plane strain assumption, we write

E _ V - 1 .- (37)

1 0 0V2]

(S) gKod0 (38)

(s-2) (V2)
(S' 2 ) ( 02  g" (g ) dO (39)

It is noted that S0 denotes the elastic compliance, (Sol) defines the first-order microcrack effects

without interaction, and (S"2) defines the second-order (in w2) microcrack interaction effects.

Remark 2.2. It is interesting to notice that Eq. (28) reveals that physical nonlocal effects

are brought into constitutive equations through the process of microcrack interaction and ensemble

averaging (not volume averaging). That is, in Eq. (28), the stress-strain law at a material point

within a RVE depends not only on the constitutive behavior at the point, but also on the constitutive

behavior of neighboring points. 1
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1.3. Some special stationary examples

In this section, we apply the proposed ensemble-volume average approach to solve three special

examples. These examples are all classified as stationary micromechanical models. In particular,

the first example shows that the proposed method recovers the well-known Taylor's model whien

microcrack interaction is entirely neglected in Eq. (36). In the second example, we examine the

randomly located aligned (parallel) microcracks problem - for transverse cracking phenomenon

in laminated composites, for instance. The last example shows that the overall compliance ma-

trix becomes isotropic when all microcracks are open. Microcrack locations and orientations are

assumed' to be perfectly random. In what follows, for simplicity, we further assume that closed

microcrack contributions are neglected.

1.3.1. Dilute microcracks - Taylor's model

The open microcrack angle domain E = [01. 02] can be found by solving

sin200, + cos2 Oa' - sin 20cr >_ 0 (40)

where tensile normal stress is taken as positive. After dropping the interaction term in (36), the

overall complia.%ie becomes
"(S S" +(S") (41)

where [by integrating Eq. (38)]

([S1* 0 S"
E0 S- S1 (42)F i0 . S' s

S;261 $ 6*5

Specifically, we have

=02 - 01 - (sin 202 - sin 2 0 1) ; S22 = 02-01 -(sin 2 2 -sin2 (43)
2 2 (3

S;=2(02-01) ; S =sin2 01 -sin 2 02 =S;=S =S;2

For various biaxial loading conditions, we obtain the following results:

(1) Uniaxial or biaxial tension. All microcracks are open (01 = 0, 02 = lr) and isotropic damage

is recovered. The orientation domain is (3 [0, ,r] The non-zero components in (43) are

S= S ; = (44)
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(2) Biaxial tension/compression. We have the axial stress a' > 0, the lateral stress cra < 0,

and shear stress a' = 0. The open microcrack angle domain is definer by 0 [0, 0"1 u It -

0, ir], where
0" = tan-' (45)

The non-zero anisotropic components in (43) are

S71 = 20" - sin 20' ; S1 =20'+sin20' ; S; =40" (46)

(3) Biaxjal tension and shear. We have a' = a' > 0 and a ' or. The open domain is

defined by - [L, r] u [0.0"] U - 0',L, where

0. sin- IC_ (47)

The non-zero components in (43) are

S* = +20" S; S;,+ 0 (48)

S" = cos 29" = S;6 = 6= S;2

1.3.2. Aligned microcracks

Attention is now focused on an array of randomly located aligned (parallel) open microcracks.

This class of problems is relevant to the transverse matrix cracking problem in laminated compos-

ites; see, for example, Laws, Dvorak and Hejazi (1983), and Laws and Dvorak (1987). Since all

microcracks have same orientation, Eq. (17) can be simplified as follows:

r Oil +012 ra2  3
E l = E2 = +612) F2 (rrF/ "•( 10

,IF T2= Trr2 /2(49)
r 011+012 T. 2  3

G, = G 2 = _i sin(010 - H H2  (rr 2)/ 2 sin0locos (011 +012)

where

r= (r2 - 2ar cos 010 + a 2 )1/2 ; r 2 = (r 2 + 2ar cos 01o + a2)/2

O= 1COS_ rcosIio-a ; =o (rcosOlo+a (50)

and 0 = 0= 00 - 020, 010 = 0o2.

The numerical integration of Eq. (34) will be addressed in Section 3 of Part II of this series.

The minimum radius of integration in r (center distance between microcracks) is taken as 2a. The
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Table 1. Convergence behavior of ' vs. rm..

4a 0.429843+00 0.173965+00

8a 0.550972+00 0.225418+00

16a 0.582654+00 0.238972+00

20a 0.586498+00 0.240618+00

40a 0.591638+00 0.242820+00

400a 0.591894+00 0.243244+00

convergencL .,avior for the integration in (34) (i.e., (k/j)) with respect to the choice of the max-

imum integration radius rm., is given in Table 1. It is observed that use of rmx = 20a is qL 4e

acceptable. After numerical Gauss integration of (34) (by using 40 Gauss points), we obtain

[0 0.5865 0 k51)0= 0 0.2406

Accordingly, the transversely isotropic compliance becomes

(I ) 1 00
(S) E +-L, 0'0 2w + 1.173,,2 0 (52)

-(1 0 { 1 0 2w + 0.481w2

Clearly, the first-order terms w in Eq. (52) come from Taylor's model, and the second-order

corrections w2 in (52) come from the pairwise microcrack interactions.

1.3.3. Isotropic damage

Under uniaxial or biaxial tension, all microcracks are typically assumed open. It is also as-

sumed that microcracks are randomly located, randomly oriented, and of uniform size. As a result,

the overall behavior is isotropic. The compliance contribution due to microcrack interaction can

be evaluated by performing numerical Gauss integration of Eq. (39). The results are:

S(1 -v2).2 [0.373 0.041 0 ]E .W2 0.041 0.373 0 (53)
E [0 0 0.664

Therefore, the (piane strain) overall compliance becomes

S= 1 01 0.373w2  0.041w 2  0 (54)
E 0 0 0 2w + 0.664w2
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It is noted that the shear moduli (in 1-2 and 2-1 directions) are changed (non-zero) due to micro-

crack interaction.

It is very interesting to compare the foregoing overall compliance matrix with that derived by

the self-consistent model [e.g., Horii and Nemat-Nasser (1983)]. The overall compliance given by

the self-consistent method in this isotropic damage case is:

*~~ _ V
-= (I V IV 1i 0 (55)

Obviously, the overall compliance given by the self-consistent method goes to infinity at w = I/r.

It should be noted that any effective medium theory is inherently only applicable for low microcrack

concentrations since it does not depend on microcrack locations.

For low values of w << 1/7r, the Taylor's expansion of Eq. (55) renders

-=± 01 [w(I+ V,) 0 0 1)
E= 1 0 + 7r + [0 o + 72 0 (56)
E000 2(w + ••r)

Apparently, the compliance calculated by the self-consistent method is higher than that of the

present model. In addition, the self-consistent method predicts no change in shear moduli in the

1-2 and 2-1 directions. Finally, it is emphasized that there is no singularity in the present method

irrespective of the w value.

From Eq. (54), it is clear that the relative weight of the second-order terms (in w2, due to

microcrack interaction) to the first-order terms (in w) depends on the values of w. For example,

the relative weight is 0.373w for the 11 and 22 terms in the compliance matrix. If the microcrack

density is very small (dilute), the second-order terms are negligible. On the other hand, if the

microcrack density is high [e.g., ,: = 0.5 - corresponding to c2.' = 0.5r, defined by Budiansky and

O'Connell (1976)1, then contributions from the second-order terms are quite significant. It is noted

that, however, when microcrack densities are extremely high, the proposed second-order method

may not be accurate enough since higher-order terms should be included; see Sec. 4 of Part II for

extension to the higher-order formulation.

The proposed statistical micromechanical framework is not restricted to widely spaced micro-

crack arrays. From Table 2 in Appendix I, it is seen that the proposed two-microcrack interaction

solutions are quite acceptable even when the ratio d is only 0.1 (i.e., when the "microcrack-tip

spacing" is only one-tenth of the "microcrack size").
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1.4. Conclusions

A two-dimensional statistical micromechanical theory for microcrack-weakened brittle solids

is presented based on the concepts of ensemble-average and pairwise microcrack interaction. The

overall compliances are derived by performing ensemble-volume averaged integration over the

domain of a statistically representative volume element (in the probability space). Unlike the self-

consistent method which introduces a singularity at w = 1 /r, our method predicts a smooth increase

of effective compliance as w increases. Further, the proposed microcrack interaction framework

does not require the use of Monte Carlo simulations. It is emphasized that the proposed second-

order temns are second-order in w2 , not second-order in geometric quantities [such as (a/r)2J. In

addition, pairwise interaction effects do not vanish in the evert of perfectly randomly distributed

microcracks; see Eq. (53). In fact, effects of pairwise microcrack interactions are equally distributed

in all directions and therefore the overall behavior is isotropic.

In Part II of this series, we will further investigate issues pertaining to computational aspects of

the proposed approach, extension to "evolutionary" micromechanical damage models (with "cleav-

age 1" microcrack growth), and a higher-order microcrack interaction model. Extension to a three-

dimensional statistical micromechanical theory of brittle solids with randomly located, interacting

penny-shaped microcracks is presented in a separate papt-r [Ju and Tseng (1992)]. Numerical com-

parisons with the Taylor's model, the self-consistent model, and the differential scheme will also

be presented in Ju and Tseng (1992).
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1.6. Appendix I. Average stress field of two collinear microcracks

The problem of two interacting collinear microcracks of equal length in an infinite plate sub-

jected to uniform traction pl at infinity has an exact analytical solution [Sneddon and Lowengrub

(1969)]. The normalized (nondimensional) distance between the two microcrack tips is denoted by

2k (with k < 1), and the normalized length for each microcrack is designated as 1 - k. For this

special configuration, we have

0 10= 0 20 0 ij =0; i,j= 1,2 (57)

and 6 = 810 - 020 = 0

I+3k 3+kr = I +k ; r= 2 ril = r 21 ; r2 = -- r 12 r2 2  (58)

Therefore, the only non-zero components in (17) are

* 2(1 + k)
A = E = E2 = 2(1 + 3k)(3 + k) (59)

Substitution of Eq. (59) into (20) and solution of Eq. (19) then render the approximate average

normal stress p as follows
pO

2 - (60)

The exact solution for this average normal stress takes the same format as in (60), with A replaced

by ACT [exact; see, e.g., Kachanov (1987)]

AX -2 2(61)

Table 2 shows the comparison between A and A,, for different values of d which is defined as

d - 2k/(1 - k). It is clear that the error associated with the approximate solution increases as d

decreases. This is due to the stress field singularity at microcrack tips.
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Table 2. Comparison between A and A,

d exact approx error(%)
10 1.001037 1.001035 0.0002

5 1.00352 1.00349 0.0025

1 1.03528 1.03280 0.2396

0.5 1.07047 1.06066 0.9161

0.25 1.118034 1.091089 2.41

0.1 1.18821 1.122683 5.51

0.05 1.23801 1.13721 8.1419

0.005 1.34863 1.15280 14.52

0.0005 1.39238 1.15451 17.08
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1.7. Appendix II. Components of matrix K in Eq. (24)

K 11 = k, sin20 + k2 sin2 0 +k 3 ; K 1 2 =-kisin2O+k2 COS2 0 + k3

K 13 = -k 2 sin 20 - 2k, cos 20 ; K2 1 = k4 sin 20 + k5 sin 2 0 + k6  (62)

K22 = -k 4 sin 20 + k5 cos2 0 + k6 ; K23 = -ks sin 20 - 2k4 cos 20

where
k = -(f 2 sin 2, - f, cos 24 - f 3) ; k2 = c(f2 cos 2 + f, sin 20 + f4)

k3-- = (f2 sin20-- f, sin 2f ) ; k4 -(f 6 sin20 - fs cos20 - f7) (63)
1 11

k5 = -(f 6 cos20 +fssin20 +fs) ; k6 - (f 6 sin2 0 - f5 sin20)

and
A = (cala4 - a203)Q6 + Cf2 ; f2 = -z(Clt4 -- Cf2a3)08 + CkI

f3 = C1106 + a208 ; f4 = a5f2 + a7f/ (64)

f5 = -(al4 - 0203)a5 + a4 ; f6 = (0CI4 - O2 r3)a7 + a3

f7 = a8sf + o6f6 ; f = ~a3 a5 + a 4 a 7 ; A = det(I - a)
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1.8. Figure captions

b Figure 1. Superposition of microcrack problem.

Figure 2. The local and global coordinates systems.

b Figure 3(a)(b). Definitions of geometric quantities for two neighboring microcracks.

Figure 4. Decomposition of two-microcrack interaction problem.

26



11_ 
-coo

SI

Figure 1. Supcrposition of microcack problem.

-2-7



Y

Figure 2. The local and global coordinates systems



O

0

- - - - - - 0 0 =QL 2

• ~X2/I

r,2 r/ ri Y2
II

y11

St

01

Figure 3(a)(b). Definitions of geometric quantities for two neighboring microcracks.

S

* 2



•~~ ae20

02

y1Yl

r• Lr r22

Y2

00
- __ __ __ _

2 a,

Figure 3(a)(b). Definitions of geo tre'ic quantities for two neighboring microcrcks.

F D i



001

071

* ~Figure 4. Decomposition of two-microcrack intemratdof problem.

31



PART II

Effective Elastic Moduli of Two-Dimensional

Brittle Solids with Interacting Microcracks.

II : Evolutionary Damage Models

11.0. Abstract

In Part I of this series, basic formulations of stationary micromechanical theory and overall

responses are presented for two-dimensional brittle solids with randomly dispersed microcracks.

The basic formulations hinge on an ensemble average approach which includes pairwise micro-

crack interactions. In this paper, statistical micromechanical evolutionary models are proposed to

account for "cleavage 1" growth of randomly oriented and located microcracks under microcrack

interaction effects. Biaxial tension/compression loadings are also considered to take into account

mixed microcrack opening and closure effects. Efficient numerical integration algorithms for the

proposed ensemble averaged constitutive equations are subsequently given. Further, uniaxial and

biaxial tests are presented to illustrate the proposed models and procedures. Finally, a higher-order

microcrack interaction model within the proposed micromechanical framework is discussed.
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11.1. Introduction

A statistical micromechanical ensemble-volume average approach to explicitly derive overall

constitutive equations for microcrack-weakened brittle solids has been presented in Part I of this

series. The proposed explicit micromechanical approach takes into account interactions among

microcracks, random microcrack orientations, locations and densities, and microcrack opening dis-

placements. Damage-induced overall anisotropy can be predicted by the proposed framework. The

proposed micromechanical approach is at variance with existing "effective medium theories" such

as the self-consistent method [Hill (1965), Budiansky and O'Connell (1976), Horii and Nemat-

Nasser (1983)], the generalized self-consistent method [Christensen and Lo (1979)], the differen-

tial scheme [Roscoe (1952, 1973), McLaughlin (1977)], and the Mori-Tanaka method [Mori and

Tanaka (1973), Benveniste (1986)], etc.. In addition, the proposed framework is different from

those micromechanical interaction analyses based on Monte Carlo simulations and numerical com-

putations of stress "transmission factors" [Kachanov (1987), Kachanov and Laures (1989)]. The
simple approximate analytical solutions for the two-microcrack interaction problem render closed-

form explicit expressions for the evaluation of ensemble-average integrals.

Nevertheless, during loading histories of brittle solids, pre-existing microcracks may become

unstable and grow along certain preferred orientations, depending on loading levels, microcrack

configurations and interactions, etc.. Therefore, it is important to formulate micromechanical
"cleavage 1" [Ashby (1979)] evolutionary damage models to account for both microcrack kinetics

and microcrack interactions under specified loads. Some micromechanical "evolutionary" dam-

age models were proposed in the literature for "effective medium theories"; see, e.g., Krajcinovic

and Fanella (1986), Fanella and Krajcinovic (1988), Sumarac and Krajcinovic (1987), Ju (1991),

Ju and Lee (1991), and Lee and Ju (1991), etc.. However, these micromechanical evolutionary

damage models are only valid for weak microcrack interactions under low or at most moderate

microcrack concentrations. On the other hand, microcrack interaction models due to Kachanov

(1987), Kachanov and Laures (1989) do not consider microcrack growth or nucleation kinetics.

The primary objective of this paper is to extend the framework proposed in Part I to accommo-

date "cleavage I" microcrack growth process under microcrack interactions. "Cleavage 1" process

implies that only the growth of pre-existing microcracks is considered. Therefore, microcrack

number remains constant during loading histories. Of course, one may also consider "cleavage

2" process [Ashby (1979)] to accommodate nucleation of new microcracks. However, that is be-

yond the scope of the present paper. In Section 2, micromechanical kinetic equations characteriz-

ing the "process domains" of active (open) microcracks are introduced. These "process domains"
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together with "open microcrack domains" completely define the integration domains of the en-

semble averaged constitutive equations relating macro-strain and macro-stress. Moreový:r, various

tension/compression loadings are presented in Section 2 to illustrate the proposed approach. Effi-

cient numerical integration algorithms are presented in Section 3 to implement the proposed dam-

age models. A number of uniaxial and biaxial tests are also performed. Finally, discussions on a

higher-order microcrack interaction model within the proposed framework is given in Section 4.
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11.2. Evolutionary models with microcrack interaction

Let us consider an ensemble of randomly oriented and located microcracks within a statistically

representative volume element. The microcrack number density is denoted by n and the micro-

crack length is denoted by 2a. The representative element is subjected to two-dimensional external

loading r•. = (a', ,2c, °•r2)T. In accord with Part I of this work, the overall compliance matrix

(S) can be written as (plane strain with linear elastic matrix)

-S= so + T-5+ (1)I

where [sbe Eqs. (37)-(39) in Part I]

So(l+v)E [1 -vVO l 01 (2)

S 0 = -V I - 0(2
£ L0 0 2]0

(S'l (1-v 2) - n jag. KOd9 (3)

S• (S/--v) n 2 f a 4 g"1• do (4)

and [see Eq. (34) in Part I]

*(K) J K rdrdO1 od92o (5)

Note that a, is the half-length of a primary microcrack and definitions of g, K and Ko are given

in Eqs. (11), (24) and (26) of Part I, respectively. The effective radius r haW been normalized with

respect to the microcrack radius a,. Further, M is the current active integration domain, including

contributions from open stationary or unstable microcracks. Contributions due to closed micro-

cracks are not considered in this paper.

For biaxial loadings, the open microcrack domain can be approximately defined by finding the

domain of tensile (positive) normal stresses on microcrack planes as follows

all sin 2 O+I cos2 O-c4•sin2O > 0 (6)

It is noted that Eq. (6) only considers the far-field stresses f"°. In some cases, however, the

open microcrack domain can be affected by microcrack interaction. That is, some originally open

microcracks may become closed due to strong microcrack interaction. When this occurs, the local

stresses o, should be used in (6); i.e., one should check the following "local (normal) opening

condition" to ensure that a microcrack is indeed open: (p) > 0.
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11.2.1. Kinetic equations for microcrack growth

In continuum damage mechanics, kinetic equations characterizing damage processes ame typi-

cally postulated on the basis of hypothetical phenomenological arguments and macroscopic obser-

vations. However, as shown by Krajcinovic and Fanella (1986), microcrack kinetic equations can

be actually derived based on micromechanics, probabilistic configurations of microcracks along

certain microstructural weak planes, and fracture energy barriers on the mesoscale. When the local

stress intensity factor (or strain energy release rate) reaches a certain critical value for the weak

plane, a pre-existing microcrack is assumed to become unstable and grows along the weak plane

in an unstable manner until reaching a certain characteristic size such as a grain or facet size [Kra-

jcinovic and Fanella (1986), Sumarac and Krajcinovic (1987)]. This idealization is reasonable for

pre-existing intergranular microcracks or interfacial microcracks (between the matrix and inclu-

sions) in certain brittle materials such as concrete, ceramics, rocks, ice, and some brittle compos-

ites, etc.. For simplicity, we do not consider microcrack kinking (into the matrix or neighboring

weak planes) nor nucleation of new microcracks; see Fanella and Krajcinovic (1988), Ju and Lee

(1991), and Lee and Ju (1991) for some recent treatments. In other words, it is assumed that there

exists a higher energy barrier serving as a microcrack trapping mechanism; e.g., a higher fracture

toughness due to the matrix or due to intergranular kinking. Therefore, the proposed evolutionary

damage models are only suitable for pre-peak (not post-peak) behavior of a class of brittle materials

aforementioned. "Run-away instability" or localized macrocrack growth is not considered.

Within the context of microcrack interaction, the local stresses o" (not ou) should be employed

to compute the stress intensity factors (or strain energy release rates) on pre-existing microcrack

tips. This treatment is completely different from existing ("effective medium") micromechani-

cal evolutionary models which employ far field stresses or'. Following Krajcinovic and Fanella

(1986), we make the following two-stage simplification. It is assumed that the length of a pre-

existing microcrack can either be 2aO if the microcrack is stationary, or 2 af if the microcrack is

activated. Note that 2ao denotes the average length of an initial microcrack and 2a! signifies the

average length of a propagated microcrack (e.g., the grain or facet size). The relation between the

initial and final microcrack lengths is assumed to be

ao = po af (7)

where P0 is a scalar between 0 and 1. The microcrack growth from 2a0 to 2a! is assumed to be

instantaneous once the local fracture energy is reached.
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The actual fracture criterion of a material depends on its underlying physics of fracture. This

paper does not intend to investigate fracture criteria of all materials. Instead, we attempt to demon-

strate possible procedures involved in a micromechanical statistical evolutionary damage formula-

tion. For illustration purpose, the following mixed mode fracture criterion is employed [see Kan-

ninen and Popelar (1985, p. 50-51)]:

+ K 2 (j' 2  (8)

where Kt and K11 are the Mode I and Mode II stress intensity factors of an initial microcrack,

respectively. Similarly, KI, and Kno respectively, are the Mode I and Mode 11 critical stess in-

tensity factors of the weak plane where a pre-existing microcrack is located. The foregoing fracture

criterion may be suitable for some materials but modifications are necessary when application to a

specific material is sought. In the spirit of statistical ensemble-average stresses, it is reasonable to

write the following simple approximations (under plane strain):

K, = (p) V7-ro ; Kit = (q) v '(9)

where (p) and (q) = the ensemble-averaged local normal and shear stresses projected on microcrack

surfaces in local coordinates. Substitution of (9) into (8) leads to

(p)2 + k2(q) 2 = Fc (10)

where
"Ki Kic(I

For uniformly distributed and oriented microcracks, one has f (O) 1/7r and f(x) n. From

Eqs. (25)--(27) of Part I, one can write

(o+ K) OS (12)
\q j i\ r COOJ

U12

For convenience, let us define

M-- Ko+n(K) (13)

It is emphasized that (K) (and thus M) includes microcrack interaction effects. With (12) and (13)

at hand, Eq. (10) can be rephrased as follows
70c~2 + 72o2 + Y)3012+2 ,,o-o 0o -oC .,oo ,,o=

+'+-0+ 2(-yo 0'"22 + oI460"" + "50"201) = + (14)
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where r O Ic•/F, and

- 1= + k2 21M. ; -y1 = MA1M 12 + k2MA21M 22 ; 12 = AM' + k2Ml12 '2 (15)
"3= + k2A3 ; "14 A 1 4113 + k2M2 M 23 ; -Ys = MU2 M13 + k2 MzM23

Eq. (14) can be used to solve for the "unstable angle domains" (OP) defining the "cleavage I"
unstable microcrack growth domains under a specified far field loading o'°. Conversely, for a
specified "unstable growth angle domain", Eq. (14) can be used to obtain the external loading.

HI.2.2. Dilute case - Taylor's model

In tlis case, the overall compliance of a microcrack-weakened solid takes the form

(S) = So + T9;7 + (S+iP) (16)

where (S-Is) and (S'P) denote the compliance contributions from initial microcracks and micro-
* crack growth, respectively. (S'-P) can be expressed as [cf. (42)-(43) of Part 1]:

S (1-,2) S1 [SIV 0 S1S£ wo(p -1) 0 S*1f S;'6 (17)

where wo - nao and
S;1' = 0' - OP - 1(sin 20' - sin 20P) ; P= - OP + '(sin 20' - sin 20P)

' = 2(O - OP) ; S•" = sin2 0' - sin2 O= S,

In Eq. (18), OP = [OP, O] is the evolutionary angle domain defined by Eq. (14).

(1) Uniaxial tension: &2 > 0, c = &2- = 0. All microcracks are open but overall responses
are anisotropic due to preferred orientations of microcrack growth. Specifically, the process
domain is OP = [0, 0P] U [7r - OP, r] (see Fig. 1), where OP can be solved from (14) for given

&3 (or vice versa):

"12 = cos' OP + P2 cos2 0' sin2 0p = o02 (19)

From (18), we have

Sn'" = 20P - sin 20P ; S;2 = 20' + sin 20P ; S," = 40 ; others=0 (20)

(2) Biaxial tension/compression: &2 > 0, &1 < 0, &2 = 0. The bound of unstable growth

angle domain, 0", can be computed from Eq. (14). The process domain is therefore O3 =
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[0, 01 U [r - OP, r]. Conversely, one can obtain the axial external tensile stress &a2 for given

lateral external stress &' and prescribed angle bound OP:

qý= ( + (-'-'Y2Y°)5V+Yz)2(21)

The non-zero components of (S'P) are

S,*' = 20P - sin 20P ; S;2' = 28P +sin20P ; S;3r =40P (22)

Since &0 < 0, it follows that • is negative and proportional to the density wO. This is due to the

fact that Mode II contribution to (contractive) lateral strain is greater than Mode I contribution

for biaxial tension/compression loads. To wit, let us consider an arbitrary stationary microcrack

and compare the contributions of Mode I and Mode II to c*1:

S= 2(1 -V2) a20
E' 2 E sin 2 + sin2  1 (Mode I) (23)

*11 1 (1 - v2)7ra20 sin2 20(a' - a') (Mode II) (24)

The sum of Mode I and Mode II contributions is

c=2(1 - z'2)ira 2°
E 2 E sin 2 O-c < 0 (25)

11.2.3. Uniaxial and biaxial tension loadings

Within the proposed framework, the computation of overall compliances require. anformation

regarding integration domains for microcrack opening and growth. For uniaxial tension, all micro-

cracks are initially open and Eq. (14) becomes (19) in which -y2 is evaluated by (15). The length of

a microcrack is either a, = a0 if stationary or a, = a! if unstable. For a prescribed configuration

of microcrack growth domain, OY = [0, OP] U [ir - OP, ir], one can systematically explore the status

and length (a2) of a second neighboring random microcrack. The details (27 possible cases) are as

follows; see also Figure 2.

39



Category I. If 0 < 0 < OP and a, = a1 : 9 possible cases concerning the length of a2.

O<9+10o<5OP a2 9P<0+ 10o_<ap a2

(1) If 0 < 02o 5 0 + 0io + OP, then af (4) If 0 < 020 + 01o - OP, then ao

(2) If 0 + Olo + O,0 <2o 0 + 01o + a ao (5) If O + 010 - O < 020 < 0 + 010 + OP a!

(3) If O + Olo + aP < 020< r a1  (6) If O0 + 10 + OP • < O20 <_ r ao

aP < 0 + 010 < 2ir 2

(7) If 0 < 0:.e < 0 -& 0O-o _-YP, then a1

(8) If 0 + 01o - orf < 02o0 _< + 010 -OP aO

(9) If 0 + 01o - OP < 020 < 7r af

Category IL If OP < 0 <aP and a, = ao: 9 possible cases concerning the length of a2.

0P < 0+010 •W : a a2  a" < 0+010 (3 O" a2

(1)IfO < 020 < 0+O0o-OP, then ao (4)If0 < 20 < 0 + O0o - aP, then a!

(2)If0+01o- 9P < 020 5_O+ 01o+ OP aj (5 )IfO+O0o - ap < 020 • O+Oo- OP ao

(3) If 0 + 0jo + OP < 02o <: ao (6) If 0 + Olo - OP < 020 :5 af

3" < 0 + 010o< 2r a2
(7) If 0 < 02o < 0 + 01o - OP, then ao

(8) If 0 + Olo - OP < 02o < 0 + 0lo - a" a1

(9) If 0 + 01o - a" < 020 < 7r ao

Category IlH. If a" < 0 < r and a, = a1 : 9 possible cases concerning the length of a2.

cep < 0 + 010 _<3 OP a2 O3P < 0 + 010 < 7r + Ora a 2

(I l:if 0 < 020 < 0 + 01 o-0 a, then aj (4) If O < 020 _< 0 + 010 -/ 3,, then ao

(2) If 0 + 0jo - aP < 02o< 0 + 0o - OP ao (5) If 0 + Oio - 3 P < 020 • 0 + 010 -a a

(3) If 0 + 0jo - OP < 02o<i: 7r a (6) If 0 + Oio-a < 02o < lr ao
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r + aP < 0+010 •S 2ir a2

(7) If 0 < 02o _ O0 + O+o - aP - r, then af

(8) If O+0io- ap -1r < 02,0o _ 0 + jo - f/P ao

(9) If 0 + Ol - )3P < 02o < 7r a1

We have employed the definitions aP _= 7r - OP and OP =_ r + OP. With the foregoing analysis

at hand, one can evaluate the integrals in Eqs. (4)-(5) and the external stress &E from (19). For

biaxial tension, the foregoing integration domains remain the same and the only difference is the

evaluatibn of OP in Eq. (14).

11.2.4. Biaxial tension/compression loadings

In the case of biaxial tension/compression loadings, some microcracks are open while others

are closed. Microcrack process and open domains are coupled and affect each other. For prescribed

lateral stress &' and "process angle" OP, one has to compute the corresponding normal stress &3

(evaluated at 9 = OP) and the open/closed microcrack angle boundary 0" by Eqs. (14) and (6) in

order to predict progressive stress-strain responses. In particular, Eqs. (14) and (6) can be recast as

=(- 1- + N 2 y t 00)a" 1' 10 2  2 (26)

(22 ; + = COS

As mentioned earlier in Section 2, Eq. (6) [and therefore (26)2] is based on far-field stresses

and is therefore an approximation of the local stress formula (in biaxial tension/compression):

(p) = MA1 &0 + MA2&2 >- 0 (27)

From a mathematical viewpoint, use of (26) corresponds to a second-order (in w2 ) accurate interac-

tive microcrack theory. On the other hand, use of (26), and (27) produces third- and higher-order

terms (in w3). Since our aim is to develop a second-order theory (in w 2), Eqs. (26) can be regarded

as a good approximation. Nevertheless, Eq. (27) should always be checked against any possible

microcrack orientation to ensure that a microcrack is indeed open.

The microstructural integration domains can be systematically summarized as follows. Note

that there are 76 possible cases in total and a* - 0" and - ?r + 9.
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Category I If n < 0 < 0P and aI = a!: 19 possible cases concerning the length of a2.

0 <0 +G010<Op a2 0p<+o"00 a2

(1) If O < O2o 5 0 + 010 + Op, then af (5) If 0 < 02o < O + 91o - OP, then ao

(2) If 0 + O01 + OP < 020 < 0+01o0+0* ao (6 ) If O + Gio -- 0 < 026 < O+ 010 + O0 a1

(3) If 6 + 61o - 0' < 020 • 0 + 010 - e Gp ao (7) If 0 + 0 1o + OP < O02 < 0 + Olo + 0 * ao

(4) If 0 + 0io - ap < 620 < 7r af (8) If 0 + 010 + o" < 020 5 7r ao

&" <0+010<op a aP <O+O0< 2r a2
(9) If O< 020 < O + O10 - 0', then ao (13) IfO O o <• 0 + 010 -ck, then a1

(1O) If O + O0o - 0 * < 020 _ + 010 - OP ao (14) If 0 + 01o -- ar < 0 2D 0 0 + 01o -- a ao

(01)If0+01o--Op < 020o_+01o+O O aa (15)If0+01o--0* <02o0+ 010o-O• O ao

(12)If0+010+ OP < 020<1r ao (16)IfO+O0o- OP < 020 < 7 af

0 <0+010•_0" a2

(17) If 0 + 010 - 0" < 020 < 0 + 01o - 0p ao

(18)If0+01o-0• O<02 0o<_0+0 1o+0GT af

(19) If 0 + 01o + 0O < 020 <_ 0 + 01o + 0 ao
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Category II. If 0O < 0 < 0' and aI = ao: 19 possible cases concerning the length of a2

OP < 0+010 <90 a2 a" < 0+010_< OP a2

* (1)IfO< 2o<+0 1 0o-OP, then ao (5) IfO<020o<O+O1o-',then ao

(2) If0+ 010O- <0 20 :<O+0 10 +OP a! (6 ) IfO+Oo-0O* o<0 + 0o-10' ao

(3) If 0 + O0o + 0O < 2O 0 + 010 + 0" ao (7 ) If 0 + Oio - •P < 020 < 0 + Oo0 + 0;' af

(4) If O + 00 + a* < o<0 r ao (8) If0+01o+O < 02o < 7r ao

ap < 0 +, 10 _< '3P a2 /3P < 0 + 010 < 2ir G2

(9)IfO<02o0_0+0Io-o, then a1  (13) IfO0<02o< O+Olo -M, then ao

* (lO)If0+Oo-0 P <020o 0+01o-&" ao (14)If0+01o- /M" < 02• _ +0 1o- ep af

(11)If0+0io- 01 <020• 0 +010o-0 ao (15)If 0 +Olo- a < 0 2o < +O1o-a ao

(12)If0+01o-OP < 020< 5 a1  (16) If0+01o-oa < 020< 7r ao

0" < 0 + 01o0<_ ck a2

(17) If 0 + 010 - 0• < 02o0 0 + 010or-0 ao

(18)If0+01o- O0 < 02o0 _O+O1o+Or a1

(19) If 0 + 01o + Or < 02o0 0 + 01o + 0O ao
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Category III. If " < 0 <_ oP and aI = ao: 19 possible cases concerning the length of a2.

o* < 0+010< ap a2 OP <0+ 0o /:5P a2
(1)if O_02_ 0 + 01o - a-, then ao (5)IfO <0 20< +0Olo- aP, then af

(2) If 0 + 01o -- 0" < 920 < 0 + 0O0 - OP ao (6) If O+ 0o - &r< < 02 < 0+010 -a* ao

(3)If0+01o-OP < 020 _+0o+0OP a1  (7) IfO+0 1 0 --0 <020< O+ 0j-10 ' ao

(4 ) If 0 + 0lo + 0P < 020 < 7r ao (8) If 0 + O0o - OP < 020 < 7r a,

#P <0+00_/3" a2  7r + a* < 0 + 010o 27r a2
(9) IfO < 02o _< 0 + Olo - 3P, then ao (13) If 0 <_ 020 < 0 + 01o - a - wr, then ao
(I0)IfO+0 10 -3P <020 +•010-op a1  (14)1f0+01o--/3 <020 <_0+Io0--OP ao

(1)if0+ Ojo-a' <02o0 O+Ojo -e& ao (15)IfO+Olo-Il <O :_ 0 + Oo-or a,

(12) If 0 + 010 - 0* < 020 < 7r ao (16) If 0 + Oo - aP < 0 20 _ 7r ao

/8 < 0 + 0 10 :5 r + a* a2

(17) If 0 + Oo - : 0 0 + Olo - /3" ao

(18) If 0 + Olo - /3O < 020 + +01o - a• a1

(19) If 0 + 01o - ap < 02 < 0•+010- o a0
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Category IV. if 0 P < 0 < r and at = a1 : 19 possible cases concerning the length of a2.

O_ < 0 + 0 < OP a 2  SP < 0 + 010 < 3* a2

(1)IfO<0 2o<_0+O0o-aP, then a1  (5)IfO0<_ 2o<0+O0o-I3P,then ao

(2) If0+010 -ap <2o< 0+01o-o ao (6) If0+010-OP < 020_O+Oo-OP a1

(3) If0+01o-0- <020 0+010o-0 ao (7) IfO+010-aP <020< 0+O -o- ao

(4) If 0 + 010 - oP < 020 < 7r a1  (8) If 0 + O1o - 0 < 020J< 7r ao

7r+& <O+01o ,7r+ a a2 7r+a '<0+01o<21r a2

(9 )IfO<Ozo O < 0+6O0o- --r, then ao (13)IfO< 0 2 o _ 0+0 1o- e- r, then af

(lO)Ifb+ Oto -* <02o _0+ Oo- OP ao (14)If0+01o-ar- -r <0 2o<O+0lo-o1--* ao

(ll)ifO+Olo-/-P <02o_ 0+9&o- aP a1  (15)If0+01o- 6" <020 <0+01o-3 1o ao

(12) If 0 + 01o - aP < 02o0 _ 7r ao (16) If 0 + O0o -I3P < 020 _ 71 a1

S< 0 + 01o _< 7r +: a'a 2

(17) If 0 + 01o - 0" < 020 0 + 01o - /P ao

(18) If 0 + 010 -/)P < 020 0 + 010 - a' af

(19) If 0 + 0 1o - C(P < 02 o0 0 + 01 0 - a" a0

The foregoing integration domains completely define the integrals in Eqs. (3)-(5), and there-

fore effective compliances can be computed. In a strain-driven algorithm, the axial tensile stress

&22 can also be computed accordingly. It is emphasized that microcrack interactions affect the

values of -yj and thus &2; see (26)1. In turn, &2 affects the "opening angle" 0"; see (26)2.

1.3. Numerical algorithms and applications

1.3.1. Numerical integration algorithms

As previously mentioned, one needs to numerically evaluate the integrals involved in Eqs. (3)-

(5). Furthermore, one needs to develop efficient numerical algorithm to solve Eq. (26) involving

both process and opening domains. First, the numerical integrations of (3)-(5) can be efficiently

achieved by using the "Gauss quadrature" scheme. In carrying out the Gauss quadrature numerical

scheme, we have chosen the following integration ranges: [2a, 20a] for the distance r, and [0, wr for

the angle 010. The integration bounds for 020 and 0 are subsequently determined from the systematic

analyses presented in Sections 2.Z and 2.4.

Another issue is the number of Gauss points needed for each integration zone aforementioned

in Sections 2.3 and 2.4. Table I gives the convergence behavior of Gauss quadrature with respect
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to the number of Gauss points used for each integration zone for the "aligned microcracks" problem

previously considered in Section 3.2 of Part I. Clearly, use of 20 Gauss points in each integration
zone is sufficiently accurate. An efficient, iterative numerical integration algorithm to solve Eq. (26)

is summarized in Box 1.

Remark 3.1. For uniaxial and biaxial tensile loadings, Eq. (6) is automatically satisfied un-

less the axial stress goes to infinity; i.e., 0" = r/2. Therefore, the iterative process for finding the

opening angle bound 0* in Step (5) of Box 1 is unnecessary. e

HI.3.2. Uniaxial tension loading tests

In this section, we consider two (plane strain) uniaxial tension tests with different initial mi-
crocrack concentrations: wo = na2 = 0. 1 (moderate density) and 0.4 (high density). It should be
realized that these two concentrations are equal to 0. 17r and 0.4nr in terms of the commonly used

definition (P = n7ra). Moreover, the k value in Eq. (11) is taken as 0.5, initial Poisson's ratio

V = 0.2, and p0 = 0.6 in (7). For convenience, all strains are normalized (dimensionless) as follows:

E 
(28)

The normalized stress-strain curves are displayed in Figure 3. All compliances have also been
normalized by dividing the common factor (I - v2)/E. We observe that microcrack interactions

effectively lower the onset (threshold stress) of microcrack propagation. The existence of "corner

points" on the axial stress-strain curves in Fig. 3 is a consequence of the deterministic fracture

criterion (14) and the uniform initial microcrack size a0. If we employ a probabilistic fracture

criterion or nonuniform initial microcrack sizes, the "comer points" will disappear and be replaced

by smooth transitions [c.f. Ju and Lee (1991), and Lee and Ju (1991)]. It is noted that the axial

stress/lateral strain curves are the same for wo = 0.1 and 0.4 for Taylor's model due to the fact

that microcracks have no contribution to i,,. In the case of the proposed microcrack interaction

theory, a significant reduction in the magnitude of lateral strains is observed. That is, microcrack
interactions enhance Mode I displacements and reduce Mode IH displacements, and therefore reduce

the magnitude of lateral contraction.

Figures 4 and 5 show the normalized overall compliance components predicted by both Tay-

lor's and the proposed models. It is noted that Taylor's model does not change either (Si 2) or (S2i)

components despite damage. By contrast, the proposed interaction model shows that the shear com-

ponents (S12) and (S21) change. It is also observed that (S12) and (S21) become slightly different
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as the microcrack concentration increases. As the normalized axial stress &22 goes to infinity, one
may expect that the overall compliance matrix asymptotically becomes isotropic because all pre-
existing random microcracks grow to same length a1 . This is indeed the case for Taylor's model

and the self-consistent model. However, this may not be always true if microcrack interactions are
considered. The reason is that some initially open stationary microcracks (ao) in the very close
neighborhood of 0 = 7r/2 may become closed due to interactions with neighboring propagated mi-
crocracks (a1 ). Biaxial tension loadings can be treated in a similar fashion and therefore are not

repeated here.

11.3.3. JRiaxial tension/compression loading tests

One has to determine the open domain (0") and the corresponding axial tensile stress &ýr by

solving the system of equations (26) for specified values of OP and &' in order to compute overall
compliances. A good initial guess for 09 can be obtained from Taylor's model by solving Eqs. (6)
and (19). With this initial guess 0*(°), one can obtain the trial value &'() by using Eq. (26)1.
Subsequently, an improved trial value 0(I) can be rendered by using (26)2, and so on. In what
follows, we adopt the following properties: v = 0.2, pa = 0.6 and k = 0.5.

To illustrate the performance of the proposed numerical algorithm summarized in Box 1, let us
consider the onset point of the "cleavage I" microcrack growth. Table 2 shows the convergence

behavior of this case for wo = 0.1 and &' = -0.1. It is observed that remarkable convergence is
reached within only two to three iterations.

The normalized axial stress-strain curves for four different biaxial tension/compression tests

with wo = 0.1,0.4 and lateral compression &' = -0. 1, -0.4, respectively, are similar to those of
the uniaxial tension tests in Figure 3. However, the behavior of axial stress/lateral strain curves
depends on &' (or the ratio I!2"2/rlI) and woo; see Figures 6 and 7. The magnitude of lateral

(contractive) strains are higher for higher lateral compression &- = -0.4; compare Figures 6
and 7. On the other hand, the loading ratio 1&2-2/&-l affects the size of the open and process
domains. The sizes and orientations of these open and process domains, in turn, affect the effects

of microcrack interaction on lateral strains. In particular, for higher loading ratio I/&rj, the
net effects of microcrack interaction enhance the Mode I (dilatational) contributions and reduce
the Mode II (contractive) contributions. By contrast, when the loading ratio I&/&'l is relatively
small, the net effects of microcrack interaction enhance the Mode II (contractive) contributions;
see Fig. 7. It is worth mentioning that if &m2 continues to increase in Fig. 7, then the two solid lines
in Fig. 7 will also intersect each other just as they do in Fig. 6.
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Finally, Figure 8 displays the normalized (S22) and (Snl) compliances vs. axial stresses for

w0 = 0.4 and &I = -0.1. Due to closure of some microcracks, overall compliances are always

anisotropic, It is also noted that due to microcrack interactions, the overall compliance matrix

becomes non-synunetric (i.e., S12 S 20).
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11.4. A higher-order microcrack interaction model

The statistical micromechanical damage models presented so far are based on the concept of
pairwise microcrack interaction. This pairwise microcrack interaction mechanism essentially cor-
responds to a second-order damage theory (in w2). Within the context of the ensemble-volume
average approach, one can systematically incorporate many-microcrack interaction mechanisms

• into the proposed framework. In essence, one needs to re-derive the ensemble-average of the per-
turbation in local stress field due to n-microcrack interactions (n > 3).

To illustrate the foregoing statements, let us consider a three-microcrack (third-order in w3)
interaction mechanism. Following the definitions and assumptions described in Part I of this study,
one can recast the local ensemble stress perturbation in Eq. (12) of Part I as follows:

(29)

* where ('") is the first-order local ensemble stress perturbation due to pairwise microcrack interac-
tions, and (T) is the second-order local ensemble stress perturbation due to the third order micro-

crack interactions. In particular, (T) can be expressed as [cf. Eq. (13) of Part I]

* (T)(x,a, ;X1,al,OdX2, a2,02)f(x2, a2,021x, a, O;xjal,0) dO2 da2 dx2  (30)

Here, (t')(x, a, 0; x1 , ai, 0 1 x2, a 2 , 02) is the second-order stress perturbation of a microcrack cen-

tered at x with (a, 0), given a microcrack centered at x, with (a,, 01), averaged over the subclass of
* realizations having a microcrack centered at x2 with (a 2, 02). Further, f(x 2 , a2, O2Ix, a, 0; xi, a,, 01)

is the conditional probability function for finding a microcrack centered at x2 with (a2, 02) given

two microcracks fixed at x with (a, 0) and at x, with (a,, 01). f(x2, a2, 02tx, a, 0; x, al, 01) can be

simplified to f(x, a, 0) by the assumptions of local homogeneity and reasonable randomness.
Z

The solutions of T for a system of three (or many) arbitrarily located and oriented microcracks
were previously investigated by Horii and Nemat-Nasser (1985), and Kachanov (1987). In partic-

ular, Kachanov (1987) pursued extensive numerical computations in order to obtain the "transmis-
* sion factors" for local stresses. Alternatively, one can derive approximate analytical solutions for

T by following the procedures presented in Sec. 2.3 of Part I.

For clarity, let us express T and (e*)(x) as follows [cf. Eqs. (25) and (28) of Part 1]:

(T) = (TI + IT + T) = (Ko + f(x)f(a, 0)(K) + f 2(x)f 2 (a, 0)(K')) -r- (31)
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(e')(x) = {(S") + (S*2 ) + (s"3)) . = (SO) (32)

where T .K' and [see Eqs. (29)-(30) of Part 1]

(S') f ) a2 g -Kof(a,0) dOda (33)

(S'2) =r(1 - v2 )f 2(x) a2 g. (K)f 2(a, 0) dOda (34)

(S.3) = l - V)f3(x) a2 1 g. (K') f 3 (a, 0) dOda (35)

In the above equations, K, Ko and (K) have been previously defined in Eqs. (24), (26) and (27) of

Part I, respectively. Similarly, K' (or T) can also be constructed as follows. One starts by expanding

Eq. (15) of Part I into six linear equations with j = 1,2, 3. Then, one obtains Eqs. (16)-(17) of

Part I with the understanding that j = 1,2,3 and the permutations 1-2, 2-3, 3-1 are involved in

Eq. (17). Eq. (18) of Part I is modified to include the kth (k :' j and k :¶ i) microcrack's contribution

to stress perturbations. Subsequently, Eq. (19) of Part I is expanded to a six-equation system with

a denoting a six by six coefficient matrix. The components of a are identical to those in Eq. (20)

of Part I with the understanding that the 1-2-3 permutations are involved. Therefore, we arrive

at explicit formulas similar to Eqs. (21)-(24) in Part I. Finally, it is noted that the computation of

(K') involves integration over the probabilistic domain of all possible positions and orientations

of two active neighboring microcracks. Following the standard procedures presented in Sec. 2.4

of Part I, it can be shown that (S" 3) in Eq. (35) introduces third-order terms (in w 3) to overall

0 compliance. Therefore, a third-order statistical micromechanical model can be constructed. By

repeating the foregoing procedures, we can formulate a complete hierarchical family of statistical

micromechanical theories of arbitrary order.
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11.5. Conclusions

In this paper, basic two-dimensional formulations presented in Part I of this investigation are

further extended to account for "cleavage 1" microcrack growth processes with microcrack inter-

actions. Stemming from a micromechanical viewpoint, a mixed fracture criterion is used to derive

microcrack kinetic equations for interacting, randomly located and oriented microcracks. As a re-

sult, the proposed approach is capable of predicting the progressive stress-strain curves for biaxial

loadings. This constitutive predictive capability is not found in the current literature on stationary

microcrack interaction models. Both tensile and mixed tensile/compressive loadings are considered

in Sec. 2, including systematic analyses regarding detailed integration domains. Further, efficient

numerical integration algorithms are presented for biaxial loadings in Sec. 3. A number of model

predictions and comparisons are also performed. It is shown that load-induced anisotropy and non-

symmetry of overall compliances can be predicted by the proposed micromechanical models. It is

emphasized that the proposed models do not employ any fitted "material parameters" and do not

require the use of Monte Carlo simulations.

The proposed pairwise interaction framework is subsequently generalized to a higher-order

damage model to account for higgher (third and above) order microcrack interaction effects in Sec. 4.

However, a higher-order micromechanical damage model requires much more complicated anal-

yses. Experimental validation of the proposed micromechanical evolutionary damage models is

needed to further assess their validity for practical engineering problems.

0
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Box 1. Numerical intcrrsAtion algorithm

(1) Specify OP and 61, and guess an initial bound of opening domain 08 (e.g., from Taylor's

model analysis).

(2) Integrate (3)-(5) over 0 and 0 10. Note that

-f a1 , if 0 in process domains;
ao, otherwise.

(3) Integrate (3)-(5) over 0 2o for each value of 0 + 010. Note that
a2, if 020 in process domains;

a2 - a0, otherwise.

(4) Integrate Eqs. (4)-(5) from r = (al + a2) to max(20al, 20a2).

(5) For a given fracture criterion, find the corresponding threshold stress 8& by (26)1. Cal-

culate the updated opening angle bound 0* by (26)2 or (27). If the difference between

the initial guess and the updated O-value is not acceptable, then go back to Step (2) and

re-iterate until proper convergence is reached.

(6) Go to Step (1) and specify new OP and &' values.
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Table 1. Convergence behavior (rm. = 2AaI

No. Gauss points (A2) (k23)

10 0.5862290322 0.2405392992

20 0.5864980549 0.2406183532

30 0.5864981079 0.2406183630

40 0.5864981080 0.2406183630

80 0.5864981080 0.2406183630

Table 2. Convergence behavior

No. of iteration (i) 01..() 109"61) -6)1

0 1.2645189576

1 1.2592833120 5.2356456171E-03

2 1.2592966258 1.3313781921E-05

3 1.2592965919 3.3915545705E-08

4 1.2592965920 8.6395779419E- 11

5 1.2592965920 2.1960211427E- 13
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11.7. Figure captions

Figure 1. Schematic sketch for the definitions of process domains (0P) and opening domains

(00).

Figure 2. Schematic sketch for various integration domains, with x denoting the global

reference axis, (3e, y') denoting the first set of local coordinates, and (x2, y2) denoting the second

set of local coordinates.

Figure 3. The normalized axial stress-strain curves for uniaxial tension tests. The dotted
lines and solid lines are predictions from Taylor's and the proposed models, respectively.

Figure 4. The normalized (S22) and (Si1) compliances vs. axial stress curves for uniaxial

tension tests with wo = 0.1. The compliances have been normalized by the factor (1 - v2)/E. The

dotted lines and solid lines are predictions from Taylor's and the proposed models, respectively.

Figure 5. The normalized (S12) and (S21) compliances vs. axial stress curves for uniaxial

tension tests with wo = 0.1 and wo = 0.4. The dotted line is the prediction from Taylor's model

for both wo = 0.1 and wo = 0.4. The dash-dot lines and solid lines are (S12) and (S21) predictions,

respectively, from the proposed model.

Figurc 6. The normalized axial stress vs. lateral strain curves for biaxial tension/compression
tests with &I = -0.1. The dotted lines and solid lines are predictions from Taylor's and the

proposed models, respectively.

Figure 7. The normalized axial stress vs. lateral strain curves for biaxial tension/compression

tests with &' = -0.4. The dotted lines and solid lines are predictions from Taylor's and the

proposed models, respectively.

Figure 8. The normalized (S22) and (Sil) compliances vs. axial stress curves for biaxial

tension/compression tests with wo = 0.4 and &0 = -0.1. The dotted lines and solid lines are

predictions from Taylor's and the proposed models, respectively.
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Figure 2. Schematic sketch for various integration domains, with x denoting the global

reference axis, (x', yj) denoting the first set of local coordinates, and (4, y2) denoting the second

set of local coordinates.
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PART III

A Three-Dimensional Statistical Micromechanical

Theory for Brittle Solids with Interacting Microcracks

I1.0. Abstract

A three-dimensional statistical micromechanical theory is presented to investigate effective

elastic moduli of brittle solids with many randomly located, penny-shaped microcracks. The macro-

scopic cbnstitutive relations are statistically and micromechanically derived by taking the ensemble

average over all possible realizations which feature the same statistical distribution of microcracks.

Approximate analytical solutions of a two-microcrack interaction model are presented to account

for pairwise microcrack interaction among many randomly located, aligned microcracks. There-

fore, the ensemble-averaged stress perturbations due to microcrack interaction can be constructed

in closed-form. The overall effective compliances of microcrack-weakened brittle solids are de-

rived by further taking the volume average of the ensemble-averaged stress-strain relations over the

entire mesostructural domain of a representative volume element. Some numerical examples are

given to illustrate the behavior of the proposed method. Comparisons with some existing methods

are also appended. Finally, a higher-order ensemble-average formulation of microcrack interaction

is briefly discussed. The proposed framework is fundamentally different from existing "effective

medium methods" which do not depend on microcrack locations and configurations. It is empha-

sized that no Monte Carlo simulations are necessary in the proposed framework.
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111.1. Introduction

Damage mechanics has emerged as an important branch of solid mechanics pertaining to mi-
crocrack nucleation, growth, coalescence and interaction, as well as their effects on overall mechan-
ical responses of materials. Basically, there are two types of models: (a) phenomenological damage

models (e.g., Ju (1989a,b), Chow and Wang (1987)), and (b) micromechanical damage mrels. We
refer to Krajcinovic (1989) for an excellent comprehensive literature review on damage mechanics.

The majority of micromechanical damage theories falls into the category of "effective medium
methods". When microcrack interactions are totally ignored, the resulting micromechanical mod-
els are termed "Taylor's models"; see, e.g., Krajcinovic and Fanella (1986), Fanella and Krajci-
novic (1988), and Ju (1991b) for some micromechanical evolutionary models. The "self-consistent
method" (Hill (1965)) was applied to damaged solids by Budiansky and O'Connell (1976) focus-
ing on randomly distributed, weakly interacting microcracks. The self-consistent method was fur-
ther explored by Horii and Nemat-Nasser (1983), Laws et al. (1983), Laws and Dvorak (1987),
Sumarac and Krajcinovic (1987, 1989), Krajcinovic and Sumarac (1989), Horii and Sahasakmon-
tri (1990), Nemat-Nasser and Hori (1990), Ju (1991a), Ju and Lee (1991), and Lee and Ju (1991),
etc.. In addition, a three-phase "generalized self-consistent model" was proposed by Ciristensen
and Lo (1979), and Christensen (1990). The "differential scheme" was investigated by Roscoe
(1952, 1973), McLaughlin (1977), Laws and Dvorak (1987), Hashin (1988), Nemat-Nasser and
Hon (1990), and so on.

On the other hand, based on variational principles, Hashin and Shtrikman (1962, 1963) pro-
posed upper and lower bounds for elastic composites with elastic inclusions. Extension of their
work to penny-shaped microcracks is possible, see, for example, Willis (1977). Moreover, the
"Mori-Tanaka method" was studied by Mori and Tanaka (1973), Benveniste (1986), Zhao, Tandon
and Weng (1989), and Weng (1990). The Mori-Tanaka method produces identical results to the
Hashin-Shtrikman bounds (1962, 1963) under many situations; see Weng (1990) for details.

It is noted that effective medium methods are only valid for low or at most moderate micro-
crack concentrations since they do not depend on microcrack locations or configurations. When
microcrack concentrations ame higher and microcrack spacings are smaller, strong microcrack in-
teractions become significant and microcrack locations should be accounted for. Excellent strong
microcrack interaction models were proposed by Gross (1982), Horii and Nemat-Nasser (1985),
and Hori and Nemat-Nasser (1987) for two-dimensional deterministic microcracks (not at the con-
stitutive level). More comprehensive studies were investigated by Kachanov (1985), Kachanov
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and Montagut (1986), Kachanov (1987), Montagut and Kachanov (1988), Kachanov and Laures

(1989), and Laures and Kachanov (1991)for two- and three-dimensional deterministic arbitrary mi-

crocrack arrays (at the constitutive level). In particular, the valuable work due to Kachanov (1987)

and Kachanov and Laures (1989) are ideally suited for deterministic microcracks. However, one

needs to perform Monte Carlo simulations associated with their method in the event of statistically

distributed microcrack arrays.

In this paper, we attempt to establish a statistical micromechanical framework to predict effec-

tive moduli of brittle solids with many interacting, randomly located penny-shaped microcracks.

Randont microcrack locations and relative configurations are accommodated through probability

density functions and the ensemble average approach. It is noteworthy that Batchelor (1970),

Batchelor and Green (1972), Willis and Acton (1976), Hinch (1977), and Chen and Acrivos (1978ab)

employed similar methods to characterize elastic particulate composites. On the other hand, the

proposed method is quite different from that proposed by Hudson (1980, 1981, 1986). Hudson's

method, though using the ensemble average approach, is based on a second -rder stiffness theory

and therefore leads to irrational behavior for solids with moderate or high microcrack concentra-

tions (Sayers and Kachanov, 1991). The proposed approach is free from this anomaly.

This paper is organized as follows. In Section 2, the ensemble average approach to derive local

damaged stress-strain relations is introduced. Approximate closed-form solutions are subsequently

presented for the interaction problem of two aligned but arbitrarily located penny-shaped micro-

cracks. The overall moduli of a representative volume element are then derived by the volume

averaging process in Section 3. In Section 4, applications are made to some special cases. In

particular, in the event of dilute microcracks, the present approach recovers the well-known Taylor's

model by neglecting interactions among microcracks. Comparisons with some existing methods

are also presented. Finally, a higher-order microcrack interaction formulation within the proposed

framework is discussed in Section 5.
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1111.2. An ensemble average approach to 3-D aligned microcrack interaction

In this section, we start by studying the ensemble averages of microcrack-perturbed stresses

and strains. Approximate closed-form analytical solutions of two arbitrarily located, aligned mi-

crocracks are subsequently given. Finally, some test problems are examined to assess the accuracy
of the proposed approximate analytical solutions.

Following the current literature, it is assumed that the volume-average stress & is approximately

equal to the far-field stress o,'. This common assumption can actually be removed and further
improvements are possible. These and related issues will be addressed in a forthcoming paper.

111.2.1. Ensemble averages of microcrack-perturbed stresses and strains

Due to the existence and interaction of microcracks, local stresses and strains in the matrix

material are perturbed. The ensemble average approach hinges on the concept that local stresses,

strains and compliances (or stiffnesses) at a typical point within a representative volume element

(RVE) of a microcrack-weakened solid can be obtained by averaging over the ensemble of all sta-

tistical realizations of randomly distributed microcracks. Batchelor (1970), Batchelor and Green

(1972), and Hinch (1977) applied this approach to the study of fluid suspensions within the frame-

work of pairwise (second order) interaction. The ensemble average approach with pairwise in-

teraction was later applied to composite materials with interacting inclusions (inhomogeneities) by

Willis and Acton (1976), as well as Chen and Acrivos (1978a,b). Recently, Chen and Ju (1991) and

Ju and Chen (1991) proposed two-dimensional (second-order and higher-order) micromechanical

damage theories for brittle solids with interacting slit microcracks by employing the ensemble av-

erage method and micromechanical fracture mechanics. It is noted that local displacements, strains

and stresses vary with positions within a RVE.

For simplicity, we consider a two-phase composite composed of a linear elastic matrix and

many randomly located penny-shaped microcracks. The local strain tensor at a point x within the

RVE takes the form:

C(x) = So : ff(x) + E*(x, C) (1)

where c and a denote the local strain and stress, respectively; c" is the perturbed strain due to the

existence and interaction of microcracks; and C denotes the set of all possible configurations of

microcracks. It is emphasized that e" is zero if x is a point in the matrix and non-zero if x is a point

on the microcrack surfaces. Taking the ensemble average over Eq. (1), we arrive at

(E)(x) = So : (fr)(x) + (C*)(x) (2)
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where the angle brackets (.) signify the ensemble average.

Throughout the development of this paper, for simplicity, we shall assume that the solid is

locally homogeneous (Hinch (1977)) and penny-shaped microcracks do not intersect one another.

Local homogeneity implies that all probability density functions (PDF) do not vary under small

translation on a macroscopic length scale. It can be shown (Chen and Ju (1991)) that, in the case

of microcracks, the perturbed strain can be expressed as

(C )(x) = f(x) W I (f9u] 9 n + n 9 IuIul)(x'Ix, Q)f(Q) dgdS, (3)

Here, !9 (a, n) indicates the microcrack radius a and orientation n. Furthermore, x' denotes a

point on the surfaces (S,) of a microcrack centered at x; f(x) is the PDF for a microcrack being

centered at x; flul is the vector of microcrack opening displacements; and f(9) is the PDF for a

microcrack with a geometry g. If all penny-shaped microcracks are aligned (parallel) and of equal

size, then there is no variation in !. This could correspond to, for example, microcracks generated

by fiber breaks in unidirectional fiber composites (see, e.g., Laws and Dvorak (1987)). In this event,

Eq. (3) can be simplified as follows

(W)(x) = f(x) , (14u1] Z n + nO ffu])(x'Ix) dS, (4)

It is well known that, for an open penny-shaped microcrack with radius a embedded in an

infinite linear elastic isotropic matrix, the microcrack opening displacements at x' (at a distance p

from the center of the microcrack) are:

flu, = l v' -_ _ 2 s{[u' r. E(2 - v) P (2  2t)p (5)

where E and v = the Young's modulus and Poisson's ratio of the virgin matrix material, respectively.

Moreover, p, s and t are the z-direction normal, the r-direction shear and the y-direction shear

stresses projected on the microcrack surface in its local coordinates; see Fig. I for a schematic plot.

If all (open) microcracks are aligned (parallel), then we can define n = (0,0, 1)T`. By sub-

stituting Eq. (5) into (4) and carring out the integration, we obtain (assuming equal microcrack

size)

W)(eW(x f W 16(l - v (T) (6)
3E(2 - v) g
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where (the Voigt's notation)

(e') 2(=) 1 (7)

e;ý 2(c) J
In addition, g is the transformation matrix and T is the local stress vector:

0 00

g"= 0 0 T~f' (8)

0 2 0

In the event of distributed (nonuniform) microcrack lengths and orientations, similar (though more

complicated) expressions can be constructed accordingly.

On the other hand, the local stress vector (T) can be shown to be (see Eq. (14) in Sec. 2.2):

Pi

T=T- +T- = I + (9)

Here, T' denotes the unperturbed local stress vector due to remote loading, and t denotes the

local stress perturbation due to three-dimensional microcrack interactions. In what follows, atten-

tion is focused on pairwise microcrack interactions. Higher-order microcrack interactions will be

discussed in Sec. 5. By assuming that all microcracks are aligned with a chosen global coordinate

system, the stress TOO due to far field loads can be expressed as

TC0 = K0 . Tr (10)

where

Ko=0 g= 88 ; -to½.J= I} (11)
arx

0 0 0 1 0•

The ensemble average of local stress perturbation, on the other hand, takes the form (assuming

uniform size and aligned orientation):
o (T)(x) = 0(T)(x~xz)f(xi x) dx0 (12)
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where (T)(Y I'%,) = the ensemble-average stress perturbation for a microcrack centered at x over the

subclass of realizations having a microcrack centered at % ; and f(xl Ix) = the conditional PDF for

• finding a microcrack centered at x, given a microcrack centered at x. Further, E designates the

active (open) integration domain which depends on the loading conditions,

The conditional PDF f(xllx) can be simplified to f(xi) if microcracks do not intersect and

0 reasonable randomness holds (Hinch (1977)). The local homogeneity assumption enables us to

further approximate f(xj) by f(x). Therefore, Eq. (12) can be recast as:

(iT)(x) = f(x) J(T)(xlx1) dxl (13)

The quantity i(xlx1 ) corresponding to the pairwise microcrack interaction will be the main subject

of the next section.

111.2.2. Approximate explicit solutions for pairwise interaction of aligned microcracks

The objective of this section is to construct approximate closed-form explicit expressions for

perturbed stresses ! due to the two-microcrack interaction so that the ensemble-average formalism

proposed in Sec. 2.1 can be realized. It is actually possible to derive explicit expressions for t in
the interaction problem involving two arbitrarily oriented and located penny-shaped microcracks.

However, general solutions of the two-microcrack interaction problem are rather complicated and

no reasonably compact closed-form explicit solutions can be presented within normal journal page

0 limit. Therefore, for demonmrration purpose, attention will be foucused on explicit solutions of

two randomly located, aligned (parallel), equal-sized, penny-shaped microcracks embedded in an

infinite, linear elastic isotropic matrix. Nonetheless, in a forthcoming paper, arbitrary microcrack

orientations, locations and sizes will be accommodated through numerical "microcrack interaction
0 matrix" and the ensemble average approach.

The "pseudo-traction" method is adopted here to derive approximate expressions for T since

exact solutions are not yet available. For mathematical simplicity, only the first term of Taylor's

• expansion of the local stress field is used to represent the average stress across the microcrack

surface. Higher-order terms in polynomial expansions may be included if desired, however, at the

high cost of a much larger system of equations and much more complicated analytical expressions.

Stemming from a different vihwpoint, the more accurate "transmission factor"-type formulation

proposed by Kachanov (1987) is well suited for deterministic numerical computations. Within the
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framework of statistical epr,''ible average, nevertheless, closed-form explicit solutions for stress-

interaction are preferred.

Figure 1 shows the local coordinate systems for microcracks I and 2 of radius a. The z-axis
is chosen as the direction normal to the microcrack surface. In accord with the pseudo-traction
concept, the problem of two interacting microcracks subjected to far field stresses can be decom-

* posed into a homogeneous problem and two sub-problems (see also Chen and Ju (1991)). In the

homogeneous problem, a microcrack-free solid is subjected to applied stresses at far field. In the

sub-problem j (j = 1, 2), an infinitely extended solid contains only one penny-shaped microcrack

and is subjected to zero remote stress at infinity. Since stresses vanish on microcrack surfaces (S,),

* the following boundary conditions must be satisfied (j = 1, 2):

-pj + p +P=0 ; -s + s' + =O ; -/t 3 +t "+t=O (14)

In the first sub-problem (containing only the 'microcrack V '), let us define a cylindrical coordi-

nate system with the center of the 'microcrack 1' as its origin. Accordingly, the center location of
the 'microcrack 2' can be characterized by (p, 0, z); see Fig. 1. For convenience, we shall introduce

the following definitions:

0 a= or,, + C ; O2 -a- 2ia'y (15)

O'Z=_ ZZ ; TZ =_Urz+i cry (16)

If the surfaces of the 'microcrack V' are subjected to applied normal stress p(l), then perturbed
40 stresses at the 'microcrack 2' location are given by (Fabrikant (1989, p. 252-257)):

,(1) 2p( ( a(l) - a2)1/2 aZ2 [14 + G2(2a2 + 2z' - 3p2 )J)or (I +2v) 12 12 - in (1,2 +. 1)~ -a)/

2p' a~2'( 2  2 1 2  (112)+ (( 22 1- 2) 1(17

a~l~- a)'/ .~ (a' az L~ a2 2a2 + 2 2  a2)"'I

2 ()= 2p(') zIe*(l• - a2)1/2 [a2(4 - 5p 2) +14

where or 2 { [A - p)2  + 112 2 12

212 a ( { [(a) z2 11 + ( 2 +z /
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Furthermore, when the surfaces of the 'microcrack 1' are loaded by the combined shear stresses

*(-) = s(I) + it(t), the perturbed stresses at the 'microcrack 2' location are (Fabrikant (1989, p. 257-

261)):

a, _ 2(f(')e'" + r~'~e'•) e al,(a 2 - + zl,(l - a2)" 2 [a2(4l• - 5P2) + i1] }

* •,1 - 2et* '4( ,al,(a2 - ()1/2r( + zl,(1•- a2 )"/2 1f4a 2__(o~_2, a2(4lg - 5p2) + li ((1) + -()e2, 1'I)]

,,) = 2(•')e' + T-2e-+V) z+[((4 - p2)"2 [a2(4l) _ 59) +

7r(2 - v) 12(1"-' -sin-2 -+ ()_33

ir(2 2 .. a -P za(2)1/2 2 '+ 2 (12a 2z 3p)](I
Wi a)/2 ( 2 - 5p2()3 +14

o [ 2 - a2 )42 +z(a 2 
-l )/2[a2(61- + T2) -)5I]]• le 2"'_ ()T'

[va(221 12 .. l) 2 2 _2 124)

(19)

* ~where €o() is the complex conjugate of r~(I). The total perturbed stresses due to combined normal

loading p(• and shear loading r° are therefore obtained:

.,(a)) + z(al =,(1)1/ 1 + a,( 2a2+ z[(,-')(a 122 si- -,• I I T (20)
2 J• _,• 121o r() - ( 12 ,,1

It can be shown that the Cartesian stress components are
=(aq 211/2 Re(o+')] _ [/( 2 ,+ -5 124]

2• 2 [ 1' e~(')

laigp)ansharloain TO areteeo re olm tained:21

7 (1) = im(r•1') ; /1-0) = Re(-+a")M

where "Re" and "Irm" are the real and imaginary parts, respectively, of a complex variable.

* Eq. (21) can be re~capitulated into the following matrix form:

___ ___ d1 d (1 )
aI 1 2 2 2

cro) = r,O) //(1 () 110)2

}i• ) - 1 b c,+c d__T 4 4 o d=

where definitions of the parameters b,, c,, and d, can be found in Appendix I. Symbolically, we
can express th as a function of coordinates and normal and shear stresses as follows:

1 r(p, .:;ps,,) (23)
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Since microcracks I and 2 are aligned, the perturbed n""-.a! and shear stresses along the sur-

faces at the 'microcrack 2' location are
S= e,'". e. = •,')

(= =((1)(2)32 e, "r~ e,, =-°x (24)

e2,= e (-) "e- a(l)=

where ex, ey, and e_ are the unit base vectors in the Cartesian (x, y, and z) coordinates.

Similarly, in the sub-problem 2 (containing only the 'microcrack 2'), it can be shown that the

perturbed normal and shear stresses along the surfaces at the 'microcmck 1' location are

* jii~~'Or2) o~ (2 (2o) (

where symbolic representations similar to Eq. (23) and (24) have been employed:

(2) = "(p, 7r - 40, z; p2, -S2, t 2 ) (26)

Eq. (24) together with (25) then leads to

0 0 0 b(2) c(2) d(4
o1 0 0 4~ 4 2) IS bo) 0 0 b -) C(2) _4)27

d6 0 0 0 1
For convenience in the following derivations, let us define

T. 2 I-2P2 ; (28)
P2 sP2•
S2 S2 j ý2

and a the 6 x 6 "microcrack interaction matrix" in Eq. (27). It is noteworthy that our o matrix,

in fact, corresponds to the A matrix (the "transmission factor" or "crack interaction matrix") in

Kachanov (1987) and Kachanov and Laures (1989). With these notations at hand, Eq. (27) can be

rewritten as

" "i-2 a- t. TI- 2  (29)

Since T1 -2 = T-2 + T1 -2 , t- 2 can be solved from Eq. (29):

1 -2 = k- T-2 ; where ]k =- r -(U - a)-' (30)
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Further, we define T -- a, 1 t 1)T and K1 E the first three rows of 1k. Hen'-- from Eq. (30), the

perturbed stresses on surfaces of a microcrack due to the existence of the second microcrack are:

T = K 1 . T',_2  (31)

Finally, since the two microcracks under consideration are aligned, it can be easily shown that

00 [001000 1r
0 0 0 0 0 1 a0

P2_ 0 0 1 0 0 0 % V
2 LO 0 0 0 1 2or)

From Eq. (32) and (3 1), we conclude that the average perturbed stress vector t over surfaces of a

microcrack is simply:

T= K-r' ; where K M K, • K2  (33)

Substitution of Eq. (33) into (13) then renders realizations for ('T) in the previous section. There-

fore, the ensemble average approach is completely defined. For non-aligned penny-shaped micro-

cracks, more complicated derivations will be involved.

*II.2.3. Some test problems for tvio-microcrack interaction

A number of test problems are considered in this section to examine the performance of the ap-

proximate analytical solutions presented in Sec. 2.2. These include normal and shear loadings for

two aligned coplanar or stacked penny-shaped microcracks. It is not our intention, however, to pro-

pose highly accurate analytical solutions to compute local stresses and stress intensity factors (SIFs)

at all points on microcrack surfaces for a two-microcrack interaction problem. Instead, reasonably

accurate analytical average perturbed stresses (in terms of elementary functions) over microcrack

surfaces are sought in order to exploit the ensemble average approach. In fact, if one is interested

in deterministic 3-D microcrack interaction, excellent numerical method has been proposed by

Kachanov and Laures (1989). It is noted that key steps in Kachanov and Laures' (1989) method

also focus on the computation of average pairwise stress "transmission factors" and average trac-

tions. Once average tractions become known, one can certainly compute projected local stresses

and SIFs at any point on microcrack surfaces. In general, the simple analytical solutions presented

in Sec. 2.2 are not as accurate as those proposed in Kachanov and Laures (1989). Nonetheless, the

latter relies on extensive numerical computations of transmission factors for all points on micro-

crack surfaces and is therefore not employed here.
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It is emphasized that, given an existing microcrack, the location of the second microcrack is
random within the ensemble average framework. Although stress interactions between two mod-
erately spaced random microcracks are not very strong, their cumulative effects are important due

to high spatial probabilities. On the other hand, stress interactions between two closely spaced ran-

dom microcracks are strong yet their spatial probabilities are lower. Therefore, contributions from

both closely and moderately spaced microcracks should be accounted for in the ensemble average
approach. The ensemble-average spacing of microcrack arrays, clearly, depends on microcrack

concentration.

Casb I: Two equal-sized coplanar microcracks under normal loading. Though numerical re-

suits for SIFs are available for two coplanar microcracks under normal and shear loadings (Fab-
rikant (1987, 1989)), exact results for average tractions projected over microcrack surfaces are not

documented. Nevertheless, Kachanov and Laures (1989) show that their results for SIFs are very

close to those of Fabrikant (1987, 1989) for two equal-sized coplanar microcracks. Therefore, the

average tractions computed by Kachanov and Laures (1989) should be quite accurate in the case

of coplanar microcracks. The ratios of perturbed vs. far-field average normal stresses (p/p') ob-

tained by the proposed method are listed in Table I for various 1/2a values (the Poisson ratio v
= 0.25). Here, I signifies the center-to-center distance between two microcracks and 2a is the mi-
crocrack size. For example, l/2a = 1.00025 means that the smallest distance between microcrack

tips is only 0.00025a. The results reported in Kachanov and Laures (1989) and relative differences

between the two results are also given in Table 1 for comparison purpose. From Table 1, it is clear

that interaction renders average stress amplification. The effect of microcrack interaction decays

as the distance between two microcracks increases. Moreover, the differences between our simple

calculations and those of Kachanov and Laures (1989) are small.

Case I1: Two equal-sized coplanar microcracks under shear loading. The ratios of perturbed

vs. far-field average shear stresses (./-r.o) obtained by the present method are listed in Table 2

for various l/2a values (the Poisson ratio v = 0.5). From Table 2, it is seen again that interaction

renders average stress amplification. The differences between our simple calculations and those of

Kachanov and Laures (1989) are small.

Case MI: Two equal-sized stacked microcracks under normal loading. The ratios of perturbed

vs. far-field average normal stresses (pipC') are listed in Table 3 for various l/2a values (the Pois-

son ratio v = 0.25). Obviously, from Table 3, interaction renders strong average stress shielding.
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The degree of shielding in this case is much stronger than the degree of amplification in Cases I or

II. Fabrikant (1989) did not provide numerical results for SIFs nor average stresses for two stacked

microcracks under normal or shear loadings. Therefore, exact results are not available. For com-

parison, the differences between our simple calculations and those of Kachanov and Laures (1989)

are listed in Table 3. It is observed that the difference is not very significant if l/2a is greater than

0.5. The difference increases as the two microcracks move closer, due to sharp variations of stress

fields in the close neighborhood of interacting microcracks.

Case IV: Two equal-sized stacked microcracks under shear loading. The ratios of perturbed vs.

far-field'average normal stresses (p/pl) are given in Table 4 for various l/2a values (the Poisson

ratio v = 0.25). From Table 4, interaction renders average stress shielding when the distance I is

small and very weak stress amplification when 1/2a > 0.5. The differences between our simple

calculations and those of Kachanov and Laures (1989) are small for l/2a greater than 0.25.

Since pairwise microcrack interactions are random (probabilistic) within the framework of the

ensemble average approach, the errors associated with the present approximate analysis should be

statistically averaged over all possible realizations. Therefore, the ensemble-average error of the

present method should be small as long as microcrack concentration is not extremely high.
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111.3. Effective moduli of brittle solids with interacting microcracks

With the ensemble average framework and analytical pairwise interaction solutions at hand,

we are now ready to construct the ensemble-average constitutive equations of brittle solids with

many randomly located, aligned interacting microcracks. By substituting Eq. (10) and (33) into (9)

and taking the ensemble average, we arrive at

0
(T) = (Ko + f(x)(K)) • TOO (34)

where

(K) K dx =1 Kr 2 sin 0 drdVbdO (35)

In the foregoing equations, it is implicitly assumed that all microcracks are of equal size and of same

orientation. In addition, the spherical coordinate system (r, tP', 0) is used to describe the random

location (xj) of the second microcrack relative to the first random microcrack centered at x. Note

0 that t0 varies from 0 to 7r and 0 ranges from 0 to 27r. If we normalize r with respect to the microcrack

radius a (i.e., • r/a), then Eq. (35) can be recast as

(K) KaC() = a ' J K• 2 sin 0 d~dodO (36)

Combining Eq. (6), (34) and (36), we obtain the local ensemble-averaged damage-induced

strain (at a typical point x):
(e*)(x) = (S*)(x).- r' (37)

Here the ensemble-averaged, damage-induced local compliance has two components:

(S*)(x) = (S'1)(x) + (S*2)(x) (38)

0 where
(Sl)x)=16(1 -v2) .. 3

(S-') (x) = 3E(2 - f(x)a 3 g. K0
(S )x)=16(1 - v2) --- 6

os2)(x) =3E(2 - 0_ f(x)aag K (k)

It is noteworthy that Eq. (39) actually reveals physical nonlocal effects in constitutive equations

through microcrack interaction and the ensemble averaging process. That is, the stress-strain laws

at a material point x within a RVE depend on the constitutive laws of all neighboring points. This

is a physical nonlocal approach, at variance with tte postulated nonlocal theories due to Eringen

and Edelen (1972).
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To obtain volume averaged moduli due to microcracks within a RVE, one simply applies the

volume-average operator to Eq. (38)-(39). As a consequence, we have

(S) ~ (S-)(x) dx [I~ [(S')(x) dx +j(S-2) (x) dx] (S'-) + (S-2) (40)

where
16(1 -V 2) 3fv f(X) dX

•Tr =_ 3E(2 - v)g K0 a V
16(1 - 2 ) 6 fv f(x) dx (41)

(')-3E(2 - v)g. (K)a V

Let hs assume that there are N microcracks in the RVE; i.e.,

J f(x) dx = N (42)

Further, consider the case in which the variance of the PDF (f(x)) for locations of microcracks is

* small (e.g., uniform probability). We may therefore write

fvf2(X) [fv f(x) dx 2  N2

Sdx V- -w -- (4 3 )

• Substitution of Eq. (42) and (43) into (41) then leads to

(e)= l6 IL 2 g..Kot
3E(2 - v) (44)

- 16(1 -V2)g(w

(So) = 3E(2 - 0) g (k) wl

where
Na 3N 3 _V(45)

V
is the (volume-averaged) microcrack concentration parameter. We emphasize that our definition

of w is different from that defined by Budiansky and O'Connell (1976). The two definitions differ

by a scalar factor 47r/3. It is noted that (S'*I' actually corresponds to the first-order contribution

due to non-interacting microcracks; i.e., the simple Taylor's model is recovered. Moreover, (S-2)

represents the secoad-order (in W2) contribution due to pairwise microcrack interaction.

Finally, the overall (volume-ensemble averaged) effective moduli for a microcrack-weakened

solid is obtained by adding the elastic compliance So to (S-):

(S) so + (S1)+ (s*2) (46)
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In partic,"'.x_., in the case of 3-D linear isotropic elasticity, So reads

1 -V -V 0 0 0
I- 1 -V 0 0 0

so 1I -V 1 0 0 0 (47)
0 0 0 2(1 + v) 0 0
0 0 0 0 2(1 + v) 0
0 0 0 0 0 2(1 + v)

* It is emphasized that local macroscopic constitutive laws for a RVE are recovered by the volume av-
eraging process. However, if one stops at the ensemble averaging level without further performing

the volume averaging process, the constitutive relations are nonlocal.

0

0

0
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I11.4. Some numerical examples

In this section, some numerical examples involving aligned microcracks are presented to il-0
lustrate the proposed ensemble-volume average approach in three-dimension. In the first example,

effects of microcrack interactions are neglected and the well-known Taylor's model is recovered.

Subsequently, the proposed second-order microcrack interaction model is implemented. Finally,

we compare the results of the present approach with some existing methods, including the Tay-

lor's model, the self-consistent method and the differential scheme. Closed (nonactive) microcrack

contributions to compliances are neglected in this work.

11L4.1. bilute non-interacting aligned microcracks

Let us consider the case in which effects of microcrack interactions are totally neglected. This

can be done by simply dropping the term (S*2) in Eq. (46):

(S) = S + (s) (48)

From Eq. (8), (11), and (44), we obtain

[00 0 0 0 0
100 0 0 00

T* (S1) = 6(l -v2 . 0O 0 2 -v 0 0 0] (49)
3E(2 -v) 0 0 0 000

06i 0) 0 0 2 00

Combination of Eq. (47) and (49) then yields
Sos so o o
[11 S12 13 0 0 0~

S2* S202 S203  0 0 00 0 0 (50)

0 0 0 0 5 0

where 1 = xx, 2 = yy, 3 = zz, 4 = xy, 5 = yz, 6 = zx (Voigt's notation); SP components are given

in (47), and
$ 33 = S3 + $33

-- =S= • + S (51)
9 3 53351

S96 = Sý6 + S66
in which

--.,t 16(1 - V2)
3E (52)

* 1-.1 --.1 32( - v

3E(2 - v)
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It is observed that only the three comDliance components in Eq. (51) are changed due to the

presence of randomly located, aligned, penny-shaped microcracks. One notes that Eqs. (50)-(52)

indeed recover the well-known Taylor's model. Further, the effective constitutive equations belong

to the category of transverse isotropy. This is typical of fiber breaks in unidirectionally reinforced

fiber composites.

I1L4.2. Aligned interacting penny-shaped microcracks

We now focus on the proposed ensemble-volume averaged, pairwise interaction model. For

a given microcrack concentration w, the overall effective moduli in Eq. (46) can be evaluated by

carrying out the integration in Eq. (36). That is, one needs to perform integration for the matrix K

over the active microcrack domain (ý, V,, 0). It is emphasized that the values of K decay rapidly

as the distance between a pair of randomly located microcracks increases. Therefore, compliance

contributions due to remote integration region can be neglected.

The integration in Eq. (36) can be effectively computed by the Gauss quadrature scheme with

three independent variables: ý, V, and 0; see Table 5 for the convergence behavior. Our numerical

experiments show that use of ,ma, = 20 (or rma= - 20a) is quite acceptable; i.e., contributions

from the ý > 20 domain can be neglected. In Table 5, the minimum radius of integraticn for r

(or ý) is assumed to be r, = 2a (or ',jm = 2). The only nonzero components in (1k) are (k13),

('26) and (k 35) (the latter two are equal). It is observed that the normal component (Pi' 13) is much

greater than the shear components ('26) and (k'35). Furthermore, use of rm,n = 2a implies that the

minimum allowable distance between any two microcrack-centers is 2a. Therefore, according to

the "face-center cubic" calculation, the maximum allowable w is I/4V/2 ý- 0.1768 for rm,, = 2a.

Note that the maximum allowable microcrack density would be 0.741 if wý is defined as 47rNa 3/3V

(Budiansky and O'Connell, 1976).

To achieve higher maximum permissible microcrack densities, various minimum radii of in-

tegration rmn are used to compute (1k); see Table 6 for details. The value of , is chosen as

20.0 in Table 6. We observe significant increases in both (k 13) and (k26) as ý,,,i decreases. The

maximum microcrack concentration w corresponding to the •,,. = 1. 1a case is found to be 1.0627

(or 4.451 if the definition of Budiansky and O'Connell (1976) is employed). It is emphasized that

Table 6 is not a summary of convergence behavior, but a display of (1k) for different maximum

allowable microcrack densities.
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For convenience, let us define (Ak13) E ki and (k/6) = (k 35 ) E k2. Therefore, according to

Eq. (8) and (44), we obtain

[0 0 0 0 0 01
0~ 00 0 0 0 01

16(1- V2)2 0 0 (2 - )k1  0 0 I0 0 0 0 2k 0(

0 0 0 0 0 2 k2J

Adding Eq. (53) to (50), we thus arrive at the expression for overall effective compliances with the

second-order microcrack interaction. Apart from the three compliance components (S 33), (S5 5 )

and (S661, it is seen that all other components are identical to the elastic components. In particular,

the three compliance components which change under microcrack interaction take the following

explicit forms:
- 0 16(1 - v2) (w + kIw2)('S33) S- 33" + - 3E +53E

32(1 3 - v2) (wkw)(54)

S(Ss) = (S~) = S5°5 + 3E(2 - v)

Clearly, the relative weight of the second-order compliance terms (in w2) to the first-order terms

depends on the values of microcrack densities. For dilute (very low) w, the second-order terms are

negligible. By contrast, the compliance contributions are significant for high W values.

III.4.3. Comparison with some existing methods

The effects of fiber breaks and aligned penny-shaped microcracks on the stiffness of unidirec-

tional fiber composites have been studied extensively in the literature. We refer to Laws and Dvorak

(1987) for an excellent presentation by using the self-consistent method and the differential scheme.

It is noted that, in Laws and Dvorak (1987), the microcrack density is defined as a - 8Na3/V;

i.e., their a is equal to &,, in this paper. The maximum microcrack concentration considered in

Laws and Dvorak (1987) is w = a/8 = 0.125. The macroscopic (overall) material behavior is, not

surp-isingly, transversely isotropic. It should be realized that the Taylor's model, the self-consistent

method and the differential scheme all belong to the category of "effective medium" approaches.

Namely, theses methods do not depend on the distributions of microcrack locations at all.

In the following numerical computations, the Young's modulus E is taken as 0.5 MPa and the

shear modulus G as 0.2 MPa (v = 0.25) for the virgin matrix material. The overall (ensemble-

volume averaged) longitudinal normal and shear compliances, (S33) and (S55), are plotted against

the microcrack concentration parameterw in Figures 2 and 3, respectively. The values of ki and k2
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in Eq. (54) are taken as 1.049792 and 0.355988, respectively, which -orresoond to mn = 1. (i.e.,

the maximum allowable density w = 1.0627). Note that, once more, w = 1 corresponds to a = 8

in Laws and Dvorak (1987). For comparison, the results obtained by using the Taylor's model, the

self-consistent method and the differential scheme are also displayed in Figures 2 and 3. We would

like to comment that: (a) the Taylor's model is really suitable for dilute microcrack concentrations;

(b) the self-consistent method and the differential scheme are suitable for low or moderate w; and

(c) the proposed statistical pairwise microcrack interaction model is suitable for moderately high

(not extremely high) u;.

Figiares 4 and 5 show the effects of microcrack density wu on the normalized longitudinal

Young's modulus ELIE and shear modulus GLIG for four different models. We have employed

the standard notation: EL =- I(S 33 ) and GL - 1/(S 55). In addition, it is straightforward to

express the normalized moduli in Figures 4 and 5 as follows for the Taylor's model:

EL 1 GL 1 (55)

E 1+5w G 1 + 2.28571w(

and for the prr- ut model:

EL 1 GL 1 (56)

E I + 5w(1 + 1.05.!) G I + 2.28571w(1 + 0.356L,)
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111.5. A higher-order ensemble-average formulation of microcrack interaction

So far, attention has been focused on the second-order statistical model based on the concept

of pairwise microcrack interaction. In this section, extension to accommodate higher-order in-

teraction mechanism is considered within the ensemble-volume average framework; see also Ju

and Chen (1991) for two-dimensional problems. The proposed higher-order formulation hinges

on the derivation of higher-order (the third or above) corrections on local stress fields (T) due to

n-microcrack interaction (n > 3); see Eq. (9)-(12).

As an illustration, let us consider a three-microcrack (the third-order in W3) interaction mech-

anism within the proposed framework. For simplicity, we assume that all microcracks are aligned

and of equal size. Following the definitions and assumptions previously described in Section 2.1,

one can rephrase the local ensemble stress perturbation as (cf. Eq. (9)):

+• T +J; (57)

where (T1) is the second-order local ensemble stress perturbation due to pairwise microcrack inter-

actions (see Eq. (9) and (12)), and (T) is the third-order local ensemble stress perturbation due to

3-microcrack interactions. In particular, (T) can be expressed as (cf. Eq. (12))

(J) = J(T)(x; x I x2)f(x2Ix; xI) dx2  (58)

Here, (T)(x; x I Ix2) is the third-order ensemble-average stress perturbation of a microcrack centered

at x, given a microcrack centered at x1, over a subclass of realizations which have a microcrack

centered at x2. Further, f(x 21x; x1) is the conditional probability density function (PDF) for finding a

microcrack centered at x2 given two microcracks fixed at x and at x1 , respectively. The conditional

PDF f(x 2Ix; xi) can be further simplified to f(x) by the assumptions of local homogeneity and

reasonable randomness (i.e., statistical independence). The active (open) integration domain E

depends on loading conditions.

For clarity, let us express (T) and (e*)(x) as follows (cf. Eq. (34), (37) and (38), assuming local

homogeneity and reasonable randomness):

(T) = (T" + T + Ti) = (Ko + f(x)(K) + f2 (x)(K')) • 7- (59)

(e>(x) = I (St1(X) + (S2)(X) + (S 3)(x)} . r = (S')(x). r (60)
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where T = K'. r' and (cf. Eq. (39))

S(S*)(x) =16(1 - v2) (91)
3E(2 - 1/)fRx)g (K)

In Eq. (61), we have defined ( I') -/a6 (K'). We recall that both K0 and R are expressed

explicitly in closed-form formulas. Similarly, k' (or T) can also be constructed in closed-form as

follows. One starts by expanding Eq. (14) into nine linear equations with j = 1,2, 3. Then, one

obtains expressions similar to Eq. (22), with the understanding that permutations 1-2, 2-3, 3-1 are

involved. Eq. (24) in Sec. 2.2 is modified to include the third microcrack's contribution to stress

perturbalions. Subsequently, Eq. (27) is expanded to a 9 by 9 system with a denoting a 9 by 9

coefficient matrix. Therefore, we arrive at explicit formulas similar to Eq. (30)-<33); and W, I
can be expressed in closed-form as in the two-microcrack interaction problem. Finally, it is noted

that the computation of (1k') involves integration over thc douiain of all possible positions of two

active neighboring microcracks around a specified penny-shaped microcrack (cf. Eq. (36)).

Following the same procedure presented in Sec. 3, it can be shown that (S"3 ) in Eq. (61) gives

rtse to the third-order terms (in w,3) to overall compliances due to the third-order microcrack in-

teractions. Therefore, a third-order statistical micromechanical model can actually be constructed.
0 By repeating the foregoing procedure, we can formulate a complete (though very complicated)

hierarchical family of statistical microcrack theories of arbitrary orders.

0

0
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U1.6. Conclusions

Based on the concept of ensemble-volume average and pairwise microcrack interaction, anS
innovative three-dimensional statistical micromechanical theory is proposed for brittle solids with

many randomly located (but aligned), interacting microcracks. The effects of interaction-induced

stress perturbations and random locations of microcracks are manifested by (T). Approximate ex-
* plicit (analytical) interaction solutions for two arbitrarily located, aligned microcracks are given

in detail. Therefore, overall effective moduli of brittle solids with interacting microcracks can be
formally derived on the ground of statistical and micromechanical informations. However, explicit

closed-fbrm solutions to arbitrarily located and arbitrarily oriented microcracks are very involved,
* and no reasonably compact explicit forms can be presented within normal page limit. In a forthcom-

ing paper, nonetheless, general microcrack geometry will be fully accommodated through numeri-
cal computations of the "microcrack interaciuon matrix" ar and the ensemble average approach. In
addition,, it is interesting to note that a physically "nonlocar" description of the material behavior

can be obtained during the ensemble averaging process.

The proposed approach is fundamentally different from existing effective medium methods
which do not depend on locations and configurations of microcracks. Further, the proposed micro-

crack interaction framework does not require the use of Monte Carlo simulations. Some numerical
examples are presented to illustrate the behavior of the proposed model. The resulting predictions

are compared with some existing methods. Finally, a higher-order microcrack interaction formu-
lation is briefly summarized.

The proposed method provides a simple framework to accommodate statistical, micromechan-

ical, and interaction aspects of distributed microcrack arrays. Applications may be made, for ex-

ample, to aligned matrix cracks, fiber breaks, and interlaminar delaminations of brittle composite
materials. Further research will be needed in the future to assess the applicability of the proposed

method to practical engineering problems.
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Table 1. Two equal-sized coplanar microcracks under normal loading (v = 0.25)

l/2a Present Kachanov Difference(%)

1.00025 1.0354 1.0837 4.46

1.005 1.0348 1.0779 4.00

1.05 1.0296 1.0529 2.21

1.1 1.0251 1.0398 1.41

1.15 1.0215 1.0315 0.97

1.25 1.0161 1.0214 0.52

1.5 1.0088 1.0104 0.16

2.0 1.0035 1.0038 0.03

2.5 1.0018 1.0019 0.01

0



Table 2. Two equal-sized coplanar microcracks under shear loading (v 0.5)

1/2a Present Kachanov Difference(%)

1.005 1.0681 1.1017 3.05

1.05 1.0580 1.0703 1.15

1.25 1.0317 1.0292 0.24

1.5 1.0174 1.0144 0.30

1.75 1.0106 1.0084 0.22

2.0 1.0070 1.0054 0.16

2.5 1.0035 1.0026 0.09

3.5 1 0013 1.0006 0.07

0

0

0

0
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Table 3. Two equal-sized stacked microcracks under normal loading (v = 0.25)

I/2a Present Kachanov Difference(%)

0.05 0.5004 0.5583 10.37

0.25 0.5383 0.6689 19.52

0.35 0.5836 0.7158 18.47

0.5 0.6667 0.7777 14.27

0.75 0.7928 0.8562 7.40

1.0 0.8754 0.9073 3.52

1.5 0.9505 0.9588 0.87
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Table 4. Two equal-sized stacked microcracks under shear loading (v = 9.25)

1/2a Present Kachanov Difference(%)

0.05 0.5549 0.6613 16.09

0.25 0.8214 0.8886 7.56

0.5 1.0002 0.9837 1.68

9.75 1.0233 1.0053 1.79

1.0 1.0180 1.0084 0.95

1.25 1.0120 1.0072 0.48

1.5 1.0080 1.0055 0.25

2.0 1.0039 1.0031 0.08

2.5 1.0021 1.0026 0.05
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Table 5. Convergence behavior of (K) vs. 'imar (given 4, = 2)

6mor = r,,l/a (A, 3) (k 26) = (k'35)
4.0 0.150807 0.059503

6.0 0.168554 0.066656

8.0 0.173029 0.068467

10.0 C.174644 0.069121

20.0 0.176139 0.069728

40.0 0.176327 0.069804

80.0 0.176351 0.069828

160.0 0.176354 0.069829

320.0 0.176354 0.069829

640.0 0.176354 0.069829
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Table 6. Numerical integration of ý K) for clifferent ý,,, (given 20)

= /a (k13) (1ý26) = (k35)

2.0 0.176139 0.069728

1.75 0.305726 0.105974

1.5 0,601154 0.195689

1.25 0.850189 0.281202

1.125 0.975302 0.327491

1.1 1.049792 0.355988
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I1.8 Appendix I: Parameters for Eq. (22)

The parameters b,, c, and d, in Eq. (22) can be shown to be:

b, = - [(I + 2v)k, + "-k2 J
i -9g3 [-Z2]

= 2 = g (1 - 2v)kl + -'k3 COS 20

2 [ l •2 k 2

/,3= 9 2 J(62)

b4 = 2093(1 - 2v)kj + z 2-k3 sin 26

2
b5 = -- zg2g3k4 sin4,

7r

b6 = -- zg2g3k4 cos4
71"

cl = f3 COS 4

c 2 = f4 COS 4, + f5 COS 340 + f6(cos 4, + COS 34,)

C3 = f4 sin b + f5 sin 34, + f6(sin 3¢ + sin 4,)
(63)

C4 = -2f 6 cos 4,

c5 = f7 + fs cos 20

C-6 =fs sin 26

di = f3 sin 4,

d2 = -14 sin 4, + f5 sin 34 + f6(sin 34 - sin 4)

d3 = f4 cos 0 - f5 cos 34 + f6(cos 0 - cos 34,) (64)
d4 = -2f 6 sin 0

d5 = fs sin 20

d6 = f7 - fscos20
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where
fl = 9'

95

95
f3 8 [-2( + v)ag3fi + zg29 3 k4]

7r(2- v)
8(1 - L')

f4 = 8- ag3 ,
r(28 v) 2 (65)

f= 7r(2-v)
2

A = -;(2 2 V)zg2g 3k4

ir(2 - vI
f7= (l+ - • zgk1,)

ý'( 2 - g 2(vaf2 + zglk3)

ir(2 2)1/)2

gi= (a - )/

g2= q - a2)1/2

11 =(66)

a
94 T27=4 -"2

k, = af 2 - sin-1(g 4)

k2 = l1 + a2(2a 2 + 2z2 - 3p2 )
g3

a2(612 - 212 + p2) - 512 (67)

95

*=a2(412 - 5p 2) + l4
0= 3
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11.9. Figure captions

Figure 1. Coordinate systems for two microcracks.

Figure 2. Comparison of overall longitudinal normal compliance (S3 3).

Figure 3. Comparison of overall longitudinal shear compliance (Ss5).

Figure 4. Comparison of normalized longitudinal Young's modulus.

Figure 5. Comparison of normalized longitudinal shear modulus.
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PART IV

An Improved Two-Dimensional Micromechanical Theory for

Brittle Solids with Randomly Located Interacting Microcracks

MO. Abstract

This paper presents applications of accurate orthogonal function approximation methods to

the two-dimensional problems of brittle solids containing randomly located and interacting mi-

crocracks within the framework of rigorous micromechanics and (probabilistic) ensemble average

approach. The random two-crack interaction problems are solved by the highly accurate Legen-

dre and Tchebycheff orthogonal polynomials to any desired orders. The complex stress potential

method is subsequently employed to micromechanically derive microcrack opening displacements

under complex loadings due to microcrack interaction effects - including concentrated loadings,

arbitrary loadings and polynomial loadings. Improved local ensemble-averaged and overall effec-

tive elastic compliances due to microcracks and their interactions are systematically constructed

by using the pairwise microcrack interaction mechanism and the ensemble average approach. A

number of interesting analytical-numerical examples containing different random microcrack con-

figurations are also presented to illustrate the capabilities of the proposed framework.

0
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IV.1. Introduction

The effects of microcrack interactions on overall elastic moduli of brittle solids have been in-

vestigated by many researchers in the solid mechanics community. Among others, Ju and Chen

(1991a,b) and Ju and Tseng (1992a) proposed two-dimensional and three-dimensional statistical

micromechanical damage models to estimate effective elastic moduli of brittle solids containing

many randomly dispersed and interacting microcracks. In particular, statistical aspects and micro-

crack interactions are explicitly accounted for. Based on a simplified stress interaction formulation,

analytical closed-form solutions of microcrack interactions are derived by Ju and Chen (199 la) and

Ju and Tseng (1992a) at the expense of some accuracy in local stresses. Gross (1982) and Horii

and Nemat-Nasser (1985) proposed some asymptotic models for microcrack interaction problems.

Embedded in their models is the restriction that microcracks are not too close to one another. On

the other hand, accurate numerical, deterministic stress interaction approximations were introduced

by Kachanov (1987) and Benveniste et al. (1989). Explicit analytical forms are not available in

their models; however, higher accuracy in deterministic local stresses is achieved and stronger

microcrack interactions are made possible.

In this study, numerical orthogonal function approximations are employed to improve the accu-
racy of local stresses of microcrack interactions and therefore the accuracy of the overall ensemble

averaged effective elastic moduli. In Section 2 of this paper, orthogonal function approximations

are applied to solve the arbitrary (probabilistic) local two-microcrack interaction problems. In

particular, Legendre and Tchebycheff polynomial families are implemented to assess their effec-

tiveness. Other approximation methods are discussed and compared with the orthogonal function

approximation method in Section 4. Applications of complex stress potentials on microcrack inter-

action problems are discussed in Section 4. Stress potentials for concentrated loading conditions are

integrated for arbitrary loading cases. Microcrack opening displacements and strains for polyno-

mial loadings of any arbitrary order are also presented. In Section 5, overall effective elastic moduli

are derived by taking the ensemble-volume averages in the probability space over all possible mi-

crocrack realizations. Finally, some numerical examples are presented to illustrate the proposed

theory in Section 6.
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IV 2. Orthogonal function approximations of two-crack interaction problems

IV.2.1. Two-crack interaction problems

The problem of two interacting microcracks embedded in an elastic solid loaded by far field

stress o"' has been studied by various methods in the literature. In particular, o", = (cra .' , aC" X)T

in two-dimension; see Figure 1 for a schematic plot of coordinate systems.

Let p and q denote the local normal and shear tractions on the surface of a microcrack, respec-

tively. A system of equations for the tractions on two arbitrary, interacting microcracks can be set

up by decomposing the original problem into three subproblems. The boundary conditions that

microcrack surfaces are traction-free lead to

PI (XI) = PT+ A (XI) ; qj(xj) = 9'+ 4i(xi)
(1)

p 2 (X2 ) = p 22 h(X2) ; q2(x 2) = q' + 42(x2)

where x, and X2 are local horizontal coordinates alorng the microcrack lines. Further, subscripts I

and 2 denote microcrack I and microcrack 2, respectively. Local tractions due to far field loading

only are p' and q'. Traction perturbation due to inter-crack interactions only are denoted by

(fil, ql, 2, q2). Assuming that a, and a2 arc the half-lengths of the two microcracks, respectively,

Eq. (1) are valid for -a, < x, < a, and -a 2 < X2 < a2. Following Kachanov (1987), Benveniste

et al. (1989) and Ju and Chen (1991a), it is assur, •d further that microcracks do not intersect each

other arbitrarily.

Following Benveniste et al. (1989), we let P,(x), n = 0, 1,22..., N denote a family of orthogo-

nal functions defined in [- 1, 1]. The tractions p1(x j), ql(xl), P2(X2), and q2 (r2) can be approximated

by the base function set as:

N N

PI P(XI) = Ep'P1.~ a II(I) E qOa
"N0 N= X (2)

p2(X2) = EZP"P.( 2 La q2(x2) = Eq2Pn( a2
n::O n=O

Accordingly, the perturbed tractions, ij(x 1), q1 (xj), P(x2), and 4(X2) are linear combinations of
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perturbations on one crazk when the other crack is loaded by the base functions:

N N

pl(X1) = Z 1p• F(12(n)x 1+ E q2F(n)
n--O n=O

N N

= n 12(n)ZI) + nF12(n) _+(=,>: 2 F (,+ ',, (X-,
n=o ,n=o (3)
N N

P2(X2) = E p n F2 (X 2) + n F 21(n)(_ "

n=0 n=0

N N

4 2 (X 2 ) 21(n) + n 2(n)_ (X
n=O n=O

where

F =n) = normal traction on crack a due to normal looding P - on crack

F =' normcl traction on crack adue to shear loading P1,(ffX- n ak

(4)
* = shea traction on crack a due to nor loading P,, on crack

= shear traction on crack a due to shear loading Pn on crack j3

Substituting Eq. (2) and Eq. (3) into Eq. (1), we obtain

N N N
pxp () + E p2-F ,(xi) + E0 q F~n)

n=0O r. -0 n=0

N N N

n . =q• +5pF 1 F n)(x 1)+ qn 12(x 1)
,=,=0 = (5)

N N N
p)2' P p2- + Ep5 F, (X2) + 5 qnF,% )X 2)

n-0 an=0 nO

N N N
E q2 p x = a+ pI F (x 2) +2 qnF9 1(n)(X 2 )
n=O (X)n=O n=O

The property of orthogonality of P, is then applied to arrive at the following system of equa-
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tions:

* P 1 = p. p( + ')(), P,,c T p-+

N

1 (F),' P,• 2 for n = 0, 1, 2,..., N

Sfor n=0,1,2,...,N

N ((6)
( a p (" a I = 2(()(Xl).P1) )P+

• (').n(•~)q = (qn(")+ j (F~p(x 2), P, (p))

N

2n )(-c), p(" q2 forn =0.1,2,...,N
n=O

(p (Lqp2LI P = (• 2,w + N Fpp (-)(2), P f-2+

N
21()(X),P (X))q- forn =0,1,2,...,N

in which (f, g)~,. denotes the weighted norm of f and g.

All the norms in Eq. (6) are simple constants after carrying out the integrations. The system
ofa4(N + 1) equations is sufficient to solve for the 4(N + 1) unknownsp, qj, p. , and q[. In the

case of N = ,4, there are 20 equations in terms of 20 unknowns. For more accurate solutions, the
number N can be increased1

i The total tractions accounting for microcrack interactions are obtained by substituting the
solved unknowns back into Eq. (2). However, another choice exists as we look at Eq. (3). That is,
in addition to the left-hand side of Eq. (2), the right-hand side provides another (better) approxIna-

tion [Benveniste et al. (1989)]. The difference between these two choices is that, with the former
choice, tractions on each crack are solved directly from the system of equations while for the latter
tractions on one crack are the sum of tractions due to the far field applied loadings and the pertur-
bations induced by the interaction with the other crack. This stress perturbation is the amount of

tractions on one crack while the other crack is loaded by the total tractions. In another words, the

total tractions solved from Eq. (6) are projected onto the other crack. This process is embedded
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in Eq. (3). Stress projections are equivalent to the evalujm,:,.,c of those inrluence functions, FaP'

FaO FOO and FO.

IV.2.2. Legendre and Tchebycheff polynomials

Among the orthogonal function sets, Legendre and Tchebycheff polynomials are widely used

in various applications. Both polynomials are tested in this study. The definitions of Legendre

* Polynomials are
Lo(x) = 0, L,.,(x) = I am [(x2 - 1)'"] (7)

2"n! dx"
with the following orthogonal property

2 ,._ forn =j
(Ln, Lj),L = 2., (8)

10, otherwise
The weighting function for Legendre polynomials is WL(X) = 1. The system of equations for two-

crack interaction with the application of Legendre polynomials is as follows

2ar ( n .), L, ) p il- N NL. xN

In=O n=O

=2aipb6,,o, forn=0,l,2,...,N

2an q - 1 1 (n(X, N, \\ N '\\(xl), L,-n~ I pP 2 E-a
n--O n=O

=2aIq'6no, forn=0,l,2,...,N (9)
(~(21 (X2.)) n N 21(~n)(X 2) ,L (fx) ) q;1 + 22p

(F 2),Lna 2  I , 2 n
=2alpqj6,o, forn=0,1,2,...,N

- ,p (i'q2yj 2 , L, ( P) p- rf. v~4, (L, ) + "••-P
n---I n--O

=2a2qp','o, for n =0, 1,2,...,N
N 

pn N 
I 2

-~ ~~ ~~ _~ (2) L'Pl- F(')(X2), L,_ (L2 q,-+•']q
n---0 n--0

= 2a2q'bno, for n =0, 1, 2,..., N

where 6i, =0 for i =j and 0, otherwise.

On the other hand, the triangle family of orthogonal polynomials, Tchebycheff polynomials, is

defined as
To(z) = l, TI(x) = r

(10)
T.+÷(x) = 2xT.(x) - T,-_(x)

with the orthogonal property

r, fori =j =0
(T,, Tj),•r = 2 fori=

0, otherwise
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The weighting function for Tebycheff family is WT(z) (1 - T2)-I/2. If th;- family is applied, we

have the following equations for the two-crack interaction problem:

2 '1 - E ( FPL))nF (z,),T. 2-) qn
N Nn=O WT n=O

= Ira pr,qbo, forn =0, 1,2,...,N_E 1 P 1) P2, (L ')
' ( (Fnx) T, (L) ~ ~-f (F,~n( 2~T ~ ) ; a~

2 - noq? a, Eqt q
n=O WT n=O WT

=7ral q6,o, for n = 0, 1, 2,..., N

N
- Z ( 2), T. P( -E P )(X 2 ),Tn (r )) q) +P2

n=O (a2 WT n=O a2 w7 n

= ira 2pq6.o, for n = 0, 1,2,...,N

- (Fp (2), T'. a2 P1 - WT, T [
n=O WT n=O W

= ?ra2q•b,0, for n = 0, 1, 2, .. ,N

(12)

Due to the fact that base functions of Legendre and Tchebycheff approximations are polynomi-

als, if no stress projection is performed, the tractions obtained by solving either Eq. (9) or Eq. (12)

and substituting the coefficients into Eq. (2) can be rearranged by collecting the terms of the same

power of x.

p,(X,) = pT + IT•(-1 ql(x) = q' + E Q• X.-1

n,--o =O (13)N n N n •
P2X2 =P2 +1:P q2(X2) =q92'Q+ (2 )f

n=O n=0 Q )

Tractions with the operations of stress projection are similarly obtained by the right-hand side of

Eq. (5).

p~(~)= -pn.F1,"kz,) + Z Qn~lln)(X1 )

N N

E_ =n12(n)( 1 ) + E Q+n= 9 n-0

N N

P2(X2) = PT + Z (T•, 2 ) + n 1Z J(
n=O n=O

N N1 n F2P11(.,)+E n11)X2

q20-2) = q2' + 9 p, :'n)((2 )+ Z Q 9Y':(kx2)
n--O n=O
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in which influence functions are similar to those defined in Eq. (4)

*P normal traction on crack a due to normal loading (c on crack #3

= normal traction on crack a due to shear loading ( on crack3

(15)
shear traction on crack a due to normal loading )on crack

= shear traction on crack a due to shear loading (- on crackL

IV.2.3. Comparisons of Legendre and Tchebycheff approximations

Both Legendre and Tchebycheff approximations employ polynomials as the base functions.

They are both orthogonal and have the same symmetry property:

L,(x) = (-1)P,,(-z) , T,"(x) = (-1)'T,(-x) (16)

The leading orders of the n th functions, L,(x) and T,(x), are both equal to n. The shapes of base

functions of the same order are quite similar. Weighting functions are, perhaps, the most noticeable

difference. For the Legendre family, the weighting function is simply 1. The weighting function

for the Tchebycheff family is singular at the two crack tips.

To compare the effectiveness of two approximation function sets on the problem of two-crack

interaction, let us consider the stress intensity factors (SIF) at crack tips. For Mode I loadings,

SIFs at both crack tips can be calculated by integrating over the crack line on the product of total

traction p(x) and the SIF for a unit concentrated normal loading [Tada et al. (1973)]:

_p1 ) at dt

For the cases in which p(x) are simple polynomiais, analytical SIF can be obtained. Assuming that

p(x) - , it can be shown that [by carrying out the integration in Eq. (17)]

K±() = (18)

where c" is a simple constant which can be easily calculated by symbolic mathematical softwares

like MAPLE, MATHEMATICA, or MACSYMA for any number of n. Manuals for these softwares

are provided in the reference. Table I shows cn for n ranging from 0 to 8. The authors like to point

out that the applications of symbolic computation softwares in various research fields are becoming
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Table 1. Constants for SIFs of polynomial loadings

n 10 11 2 3 13 4 5 16 7 18
f i 1 3 _3 5 - 5 35 23c 3 ± ±T

n 2 8 T6 T 26 128

popular as the capability of computers improved by the modern technology. loakimidis (1990)

applied these power tools to the crack problems in fracture mechanics. More references about the

so-called semi-analytical/numerical (SAN) method can be found in loakimidis (1992) in which

the numerical and symbohic computations are combined to solve the singular integral equations

commonly found in fracture mechanics.

These simple results are applicable to the problems of solving crack tip SIFs for two-crack

interaction without stress projection. Combining Eq. (13), Eq. (17), and Eq. (18), SIFs of the two

microcracks can be expressed by simple summations on the coefficients solved from the system of

equations
N N

K*(N)= Kj, (I + 1c np) ; K(vN)= Kx,(l + E cnP) (19)
n=0 n=O

where the SIFs for non-interacting case are defined by

K16, = p' ; K4 =_ p v'/ (20)

Table 2. Comparison of normalized SIFs for two interacting collinear cracks

Inner tip Outer tip

k Exact Legendre Tchebycheff Exact Legendre Tchebycheff

0.9 1.0004 1.0004 1.0004 1.0003 1.0003 1.0003

"0.75 1.0028 1.0028 1.0028 1.0024 1.0024 1.0024
0.5 1.0176 1.0176 1.0176 1.0125 1.0125 1.0125

0.25 1.0804 1.0804 1.0804 1.0409 1.0410 1.0409

"0.2 1.1125 1.1124 1.1125 1.0517 1.0517 1.0517

0.1 1.2551 1.2539 1.2551 1.0863 1.0870 1.0863

0.05 1.4729 1.4650 1.4733 1.1198 1.1229 1.1198

0.02 1.9046 1.8593 1.9132 1.1589 1.1727 1.1595

0.01 2.3716 2.2475 2.4201 1.1841 1.2149 1.1864

0.001 5.3947 4.0501 10.6993 1.2443 1.4029 1.3654

0,0001 13.3456 6.0830 -4.7501 1.2808 1.6190 1.0973

10-6 93.0293 7.9860 -1.2083 1.3212 1.8234 1.1646

115



Tables 2, 3, and 4 show the comparisons of crack tip SIFs for the three cases depicted in

Figure 2. Since the two microcracks are parallel to each other in all the three caises, SIFs of both

microcracks are identical. The non-interacting S1F, K10, is used to normalize all SIFs in the three

tables. Normalized SIFs in Table 2 are always greater than one. This is in agreement with the

physical observation since two collinear cracks intuitively enhance the tractions for each other. On

the contrary, two stacked cracks act against each other from opening the crack lines and therefore

SIFs given in Table 3 are all less than one.

Table 3. Comparison of normalized SIFs for two stacked cracks

Inner/Outer tip
r/a Legendre Tchebycheff

100 1.000 1.000

10 0.986 0.986

5 0.951 0.951
2 0.843 0.843

1 0.774 0.788

0.4 0.772 0.721

0.2 0.677 0.696

0.1 0.628 0.674

0.05 0.588 0.654

0.01 0.535 0.620

0.005 0.524 0.610

0.001 0.506 0.596

Note that SIFs at the two crack tips for stacked cases are identical. Both Legendre and Tcheby-

cheff family lead to very close results in the stacked cases even when the distance between the two

crack is very small. For the third (aligned) case in Table 4, significant differences are observed only

at the inner tips when the two cracks are very close to each other. Exact solutions given by Erdogan

(1962) are included in Table 2 for comparison for the first case in which two cracks are collinear.

Table 1 shows that if the cracks are very close, Legendre family still works well while Tcheby-

cheff family results in negative SIFs at the inner tips which are actually unreasonable. Both sets

yield nearly identical results if two cracks are far away from each other. It is interesting to observe

that except those unreasonable results, Tchebycheff method tends to over-estimate the interaction

effect. Consequently, SIFs at the inner tips calculated through Tchebycheff method are larger than
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the exact values. On the contrary, the interaction effects are under-estimated by the Legendre ap-

proximation and the inner-tip SIFs are less than the exact ones. Table 2 also shows that if the tvo

collinear crack are not too close, k > 0.01 for example, Tchebycheff method appears to be a better

approximation to the exact solution than the Legendre method though the approximation by the

later is actually quite close to the exact result. However, in the cases which two collinear cracks

are extremely close, Legendre method seems to be a better choice since the Tchebycheff method

behaves unreasonably. One possible reason for the poor approximation of Tchebycheff family at

extremely close distance is the singularities at both crack tips. In the collinear cases, tractions at the

inner crack tips rise sharply as the distance between the two cracks decreases. This fast growth is

* amplified by the weighting function which is singular at crack tips. The comparisons above show

that Legendre family is a more robust choice for the crack problems especially when cracks Are

very close and collinear.

Table 4. Comparison of normalized SIFs for two aligned cracks
0 Inner tip Outer tip

r/a Legendre Tchebycheff Legendre Tchebycheff

100 1.000 1.000 1.000 1.000

10 1.004 1.004 1.005 1.005

5 1.010 1.010 1.020 1.020

2 0.847 0.847 1.078 1.077

1 0.481 0.478 1.087 1.091

0.4 0.234 0.235 1.050 1.044

0.2 0.180 0.183 1.016 1.011

0.1 0.152 0.168 0.986 0.990

0.05 0.135 0.162 0.964 0.977

0.01 0.115 0.158 0.936 0.962

0.005 0.113 0.160 0.931 0.959

0.001 0.126 0.162 0.932 0.955

Table 5 compares the crack-tip SIFs calculated by fourth order Legendre approximation method

with and without the stress projection. The two interacting cracks are collinear as in the first case

of Figure 2. The numerical experiments show that the stress projection is not important if the two

cracks are not very close. In Table 5, SIFs with and without stress projection are quite close for k

greater or equal to 0.01. However, when the two cracks are extremely close, the operation of stress
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projection appears to be necessary if the accuracy is concerned. The approximated SIFs are much

improved toward the exact solution for the cases of k = 0.001,0.0001, and 10-6 in which cracks

are extremely close.

Table 5. Comparison of normalized SIFs for two interacting collinear cracks

by the fourth order Legendre approximation with and without stress projection.

Inner tip Outer tip

Exact No Exact Exact No Exact
k Solution Projection Projection Solution Projection Projection

0.9 1.0004 1.0004 1.0004 1.0003 1.0003 1.0003

0.75 1.0028 1.0028 1.0028 1.0024 1.0024 1.0024

0.5 1.0176 1.0176 1.0176 1.0125 1.0125 1.0125

0.25 1.0804 1.0804 1.0804 1.0409 1.0410 1.0409

0.2 1.1125 1.1124 1.1125 1.0517 1.0517 1.0517
0.1 1.2551 1.2539 1.2551 1.0863 1.0870 1.0863

0.05 1.4729 1.4650 1.4733 1.1198 1.1229 1.1198

0.02 1.9046 1.8593 1.9093 1.1589 1.1727 1.1595
0.01 2.3716 2.2475 2.3899 1.1841 1.2149 1.1858

0.001 5.3947 4.0501 5.5333 1.2443 1.4029 1.2614
0.0001 13.3456 6.0830 11.6430 1.2808 1.6190 1.3244

10-6 93.0293 7.9860 26.3239 1.3212 1.8234 1.3785
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IV.3. Other approximation methods

IV.3.1. The zeroth-order approximations

Several approximation techniques have been proposed in the literature to solve Eq. (1). For

example, Ju and Chen (199l),for simplicity, expanded the traction functions in terms of polyno-

mials with respect to the center of microcracks, and (for computational simplicity only) took only

• the zeroth-order terms which were constants for specified microcrack locations and orientations.

Therefore, Eq. (1) can be recast as
1 =q' + 4

* (21)
P2 P2 + A2

q2 q2+ 2

By employing Sneddon and Lowengrub (1969) solutions, Ju and Chen (1991) obtained approxi-

mate, analytical solutions { 0 0 (k ck2 PI
41 0 0 03 Q4 q (2)
p J as N6 0 0 P
42 a7 a8 0 0 q2

Definitions for ai's can be found in the Appendix of Ju and Chen (1991).

For compactness, let us define T,_ 2 = (pl, qi, p2, q2 )T, T'_ 2 = (p', q',, p2, q'o)T, and T1 _2 =

(fil, q1, p2, q2)T. Therefore, Eq. (21) and Eq. (22) are rewritten in matrix and vectorial forms

T1 _2 = Twi2 + t 1 _.2  (23)

"t1- 2 = TI_2

where a denotes the 4 by 4 matrix in Eq. (22). The perturbed tractions due to two-microcrack

interaction are solved from Eq. (23)

TI- 2 = a- (I -- ct)-1 ) T', 2  (24)

Definition of KI-2 = a - (I - a)-' and transformation of the far field loading o"' into the local

microcrack coordinates then render

="-2f KI-2 'G I -2 -oC (25)

where wsin 2o Cos 2 0 -0 sin 20
I= sin 20 ' sin 20 cos 20

G-2- sin (0 + 0) cos2(0+q) - sin 2(0 + )
-½sin 2(0 + q5) ½sin 2(0 +) cos 2(0 + )
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Moreover, we define t, - (f!t qI)T and2 =_ (f)2, #2)T. Therefore, Eq. (25) can be rephrased for

two microcracks as follows

*j = K, • G,_ 2 " (27)

t2 = K2 " GI_2 a00 (28)

where K, contains the first two rows of K,1- 2 and K2 the last two rows.

In addition to the aforementioned zeroth-order polynomial expansion at microcrack centers,

Kachanov (1985, 1987) proposed a more accurate approximation which also led to a system of

equation§ in terms of some constants. Eq. (1) are first averaged over the microcrack lines. In

essence, traction perturbations on one microcrack due to the interaction with another microcrack

loaded by an averagee traction are averaged over the microcrack line. Accordingly, the following

system of equations can be obtained (Kachanov, 1985)

q00 + A9 P2 + A9

= + A1 P2 A1 q2 (29)

q2 =q200 + A9P Pl 21 A•I

For a given deterministic microcrack configuration, transmission factors A,! must be computed

by numerical integrations. With pre-computed transmission factors, Eq. (29) become a system of

simultaneous equations in terms of constants only, which can be solved for the unknown average

tractions. Note that the matrix operation in Eq. (24) serves the same purpose as the solutions of

simultaneous equations in Eq. (29). Certainly, Eq. (29) are more accurate than (24). However,

much less computational efforts are required for the analytical zeroth-order polynomial expansion

since no transmission factors involving numerical integrations are needed. Further, Eq. (24) are

expressed in close-form. The efficiency of analytical expressions over numerical computations

might not be very significant for a very few deterministic microcracks. Nevertheless, for ensemble-

averaged effective compliance computations of statistical microcrack arrays (involving hundreds

of random microcracks), the computational efficiency and simplicity of the zeroth-order polynomial

expansion are more favorable.

IV.3.2. Other higher order approximations

There are a number of methods in the literature which involve higher-order approximations of

microcrack interaction problems. Emanating from Eq. (1), the traction functions were expanded
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into Fourier series in Horii and Nemat-Nasser (I 985). Moreover, Gross (1982) approximated trac-
tion functions by Tchebycheff polynomials. Both methods involve choosing a parameter which rep-

* resents the ratio of the distances between microcrack centers to microcrack lengths. Higher-order

terms involving a chosen parameter are asymptotically dropped such that the number of terms cor-

responding to expanded tractions becomes finite. A system of equations containing the unknown
coefficients of the expansion and known constants are then constructed. Approximate tractions are

computed by substituting those coefficients solved from simultaneous equations back into the trac-

tion expansions. Significant errors are observed for the foregoing two methods when microcracks

are closely located.

IV.3.3. Comparisons of SIFs for zeroth order approximation

For the case of two collinear interacting cracks in Figure 2, the SIFs solved by applying the

zeroth order approximation at center points are listed in Table 6 and Table 7 for the inner and
outer tips, respectively. Results by Kachanov and Gross are also compared with the exact values

given by Erdogan (1962). Kachanov's method which is a special case of Benveniste's method ap-

pears to be the best approximation in both tables. If no projection is performed in the center-point
approximation, the results are no better than Gross'. However, with a simple stress projection,

the center-point method becomes better than the fourth order asymptotic method of Gross. Actu-

ally, center-point zeroth order approximation with stress projections is comparable to the method

proposed by Kachanov.

Although center-point zeroth order approximation method is improved by the operation of

stress projection, the orthogonal function approximation method employed in this paper is shown

to be better when Table 6 and Table 7 are compared with Table 2. Another advantage for the

orthogonal function approximation method is that higher accuracy may be achieved by simply
increasing the number of order used in the numerical implementation. The entire formulation is

highly systematic so that the computer implementation for any order of approximation is easy and

straightforward.
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Table 6. Comparison of normalized inner-tip SIFs for two interacting collinear cracks

Zeroth Order Approximation

k Exact Kachanov Gross No Projection Exact Projection

0.9 1.0004 1.0004 1.0004 1.0004

0.75 1.0028 1.0028 1.0026 1.0028

0.5 1.0176 1.0173 1.0144 1.0176

0.25 1.0804 1.0696 1.0507 1.0797

0.2 1.1125 1.112 1.0911 1.0646 1.1109

0.1 1.2551 1.251 1.1564 1.1061 1.2423

0.05 1.4729 1.452 1.2062 1.1380 1.4200

0.02 1.9046 1.809 1.2441 1.1630 1.7039

0.01 2.3716 2.134*- 1.2583 1.1727 1.9410

0.001 5.3947 3.401 1.2719 1.1819 2.7825

0.0001 13.3456 4.731 1.2733 1.1829 3.6462
10-6 93.0293 7.309 1 1.2734 1.1830 5.3798
* from Benveniste et al. (1989) ** 2.138 from Benveniste et al. (1989)

1V4. Applications of complex stress potentials to crack interaction problems

IV.4.1. Concentrated loadings

Consider the problem of a single crack with half-length a loaded at x = b by normal and

shear forces, P and Q, as shown in Figure 3. Complex stress potentials which solve this problem

completely are readily given in Tada et al.(1973):

0 { ~Zn(z)} 7rQ(P bV~ (30)
ZII(z.) 7r Q (z - b) vzT7

where z = z + iy and i = v-'T. For normal loading (Mode I) the stresses and displacements are

ar=• ReZ, - ylmZ'

ay= ReZ, + ylmZ• (31)

r,= -yReZ"

and
2Gu = (1 - 2v)RcZ1 - yImZI (32)

2Gv = 2(1 - v)ImZt - yReZI
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Table 7. Comparison of normalized outer-tip SIFs ior two interacting collinear cracks

Zcroth Order Approximatic
k Exact Kachanov Gross No Projection Exact Projection

0.9 1.0003 1.0003 1.0004 1.0003

0.75 1.0024 1.0024 1.0026 1.0024

0.5 1.0125 1.0126 1.0144 1.0125

.. 0.25 1.0409 1.0426 1.0507 1.0406

0.2 1.0517 1.052 1.0540 1.0646 1.0510

0.1 1.0863 1.086 1.0880 1.1061 1.0828

0.05 1.1198 1.118 1.1136 '.1380 1.1096

0.02 1.1589 1.154 1.1332 1.1630 1.1339
0.01 . 1.1841 1.175 1.1406 1.1727 1.1451

0.001 1.2443 1.214" 1.1476 1.1819 1.1591

0.0001 1.2808 1.227" 1.1484 1.1829 1.1613
10-6 1.3212 1.233" 1.1484 1.1830 1.1616

* from Benveniste et al. (1989)

where S, dZj(z)
"Z=J ZI(z) dz and Z, = dz

dz
In the case of shear loading (Mode II),

o, = 2ImZnj + yReZ•!

ayy = -yReZi' (33)

r,, = ReZ11 - yIMZyt

and 2Gu = 2(1 - v)ImZ t + yReZ, (34)

2Gv = -(1 - 2v)ReZtt - yImZii
where

f , dZI(z)
"ZII - Z1l(Z) dz and I, = dz

Shear modulus and Poisson's ratio are denoted by G and v, respectively in Eq. (32) and Eq. (34).

The displacements in x and y direction are u and v, respectively.

When a microcrack is loaded by only normal pressure, the problem becomes symmetric with re-

spect to the x-axis. Relative horizontal opening displacements vanish and relative vertical opening
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displacements are simply twice the vertical displacements along the microcrack line. By contrast,

in the case of shear loading, the problem becomes anti-symmetric w;,• respect to the microcrack

line. Therefore, the relative vertical opening displacements vanish and the relative horizontal open-

ing displacements are simpl:. two times the horizontal displacement along the microcrack line. See

Figure 4 for a schematic representation.

Accordingly, the effects of normal and shear loadings to vertical and horizontal opening dis-

placements are uncoupled. Stress potentials are calculated by Eq. (30). The displacement com-

ponents along the microcrack line are then obtained through Eq. (32) or Eq. (34). Therefore, for

normal loading, we have

R[uJ] = 0 and fIv]] = 2vl,=o (C5)

and for shear loading

It, = 0 and [,I] = 2ul=o (36)

Assuming that the total volume of the solid containing the microcrack to be V, with the ap-

plication of divergent theorem, the aN :rage micromrack-induced strain can be written as [Horii and

Nemat-Nasser (1983)]

"= -�~ j u n + n ® fu]]) dS, (37)

where n denotes the normal of the crack lines Si and vector ifui] = ([luul, Iv])T the crack opening

0 displacements. Substituting Eq. (30) into Eq. (32) and Eq. (34) and by the nature of symmetry and

anti-symmetry, respectively, of Mode I and ModeI H loadings discussed above the induced strains

are

*1 Va2b{} (38)

in which the Young's modulus is denoted by E.

1V.4.2. Arbitrary loadings

For any arbitrary forms of loadings P(z) or Q(x), the concept of the famous Green's function is

applied to derive to the stress potentials and the strains. The stress potentials given by Eq. (30) and

the corresponding strains given by Eq. (38) are for the case of a crack subjected to the concentrated

loading applied at a point on the two-dimensional crack line. When a normal or shear loading in

the form of an arbitrary function apllied on the crack line, the two equations serve as the Green's
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function for this problem. Strains are therefore related to the loadings by integrating the product of
loading functions and Eq. (38) over the entire crack line

-12  VE ] V W X Q(} dx (39)

Following the same logic, the corresponding stress potentials can be derived from Eq. (30)

*~~T ( Zz faf (X) I dx (40)
Zj,(z) 1] (z - X)J - Q (Z)

and the corresponding stresses and displacements are obtained by the substitution of stress poten-
tials calculated from Eq. (40) into Eqs. (31) to (34).

* IV.4.3. Polynomial ioadings

Consider the special cases where loadings are simple polynomials. Assuming that P(Z)
P.(•)' and Q(x) = Q.(!)", the integration in Eq. (39) is an Euler integration of the first kind by a

* change of varil-ble. With the help of the Beta function, strains are written as

= 4( _, Vn + (41)

T,'J VE Q2.J 2 1)
where the Beta function is defined in terms of the Gamma function P(x):

0 B(p,q) E xp-l( - X,)9-' dx = F(p)F(q) (42)

S+(p q)
Similarly, stress potentials for polynomial loadings can be derived. Listed below are stress poten-

tials for the polynomial loadings up to the fourth order:

Z(°)(Z) = Z?)(Z)= z - V 7- 77

S- z- a2 /2

Z•)(z) = ZINZ) =2)" =

3 Iz3 v-z2- za 2 /2-(4)z(2)(Z) = z(2)(Z) = z a 7v _ , a/ (3

Z4)(z) = Z),.(z) z - - z 3 a2/2 - za /8

Microcrack opening displacements for a microcrack subjected to polynomial normal and shear

loadings
P(X) ((44)
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can thus be derived by method outlined in this section:

* Auu,(] = { ,(x). {P_ (45)

where A, (x) for n = 0, 1,2, 3, 4 for plane strain are

A0(x) = 4(1E -

A1(x) = 4 4(1 - i._2) - 2 (+

A2(X) = 2 _.T2 + (46E 3a (46)

A3(x) = 4(1 - L2 x )A 3 ) = E a' 2 8 + 4 a

A4(X) =(E- ) f + 3a4

* The factor (1- V2) should be removed from Eq. (46) for plane stress problems. It is noted that micro-
crack opening displacements corresponding to even-order polynomial loadings are even functions.
On the other hand, the odd-order polynomial loadings result in odd microcrack opening displace-
ment functions. That is,

A,,(-x) = (-1)nA.(x) (47)

for non-negative integers k. Derivations of Eq. (43) and Eq. (46) are carried out with the assis-
tance of symbolic mathematical softwares MAPLE and MATHEMATICA. Similar results may be
obtained for any number of n.

Now, assume that there are N cracks which are all aligned such that their normal directions
coincide the y-axis. Further, we assume that tensile and shearing forces are applied homogeneously
over the solids. By neglecting the interaction effects, the volume average compliances due to the
presence of microcracks can be derived by letting n =0 in Eq. (41) and summing over N cracks:

'22 =t---2 Na2 4(1 - V2)B(3 1)
P0  Q E 2'2 (48)

-- -----27rw.

E
Note that the well-known Taylor's model is recovered by Eq. (48).
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IV.5. Local and overall effective elastic moduli

IV.5.1. Local ensemble averaged moduli

Assuming that the distribution of microcracks satisfies reasonable randomness and local ho-

mogeneity [Hinch (1977)1 and that no microcracks intersect one another, statistical tractions at a

local material point are obtained by considering the effect of two-crack interaction and averaging

the effect over all possible microcrack configurations. See Ju and Tseng (1992b) for a more de-

tailed discussion. Let T(x) = (p(x), q(x))T be the vector of local tractions. Ensemble averaged

tractions at a local point are the sum of far field loading-induced component and the component

due to two-crack interaction:

(T)(xi, al, 01) = {KO(xl, a,, 01) + f(xj, a,, 01)(K)(xl, a,, 01)) ff (49)

where the transformation matrix is defined by
Ko(x,a,0 1) sin2 2o cos2 01 -sin 20] (50)

K sin20 1 sin201  cos20(
and (in the probability space)

(K)(xi, a,, 01) - jK(x1, a1, 01; x2, a2 , 02) dx2da 2d02  (51)

in which K denotes a two by three matrix whose components are solved from the system of equa-

tions described in Section 2. Each column of K represents a specific loading condition. The first,

second, and third column correspond to the cases in which the solid is loaded only by ao, oe', and

T, respectively. The two components in each column are the normal and shear tractions solved

from the system of equations. Local tractions are once again statistically averaged over all possi-

ble crack configurations at that material point. With the help of Eq. (39), ensemble averaged local

strain takes the form

(E)(x) = f(x) 2 (I W I v- t2g.(T)f(a,O)dtdadO (52)

where g is local-global transformation matrix. Note that the ensemble operator is performed in the

probability space, not in the physical space.

Local statistical compliances are then obtained by substituting Eq. (49) into Eq. (52). The

microcrack-induced compliances are separable into two parts:

(' W~ )( 2 = fo W' /a-2 - 2g &f K (a, O) dt da dO(S")(x)fx)21 1/ )j ag ad

(S'2 )(x) = f(x) 2(l E v 2) L ie fJj a at2g. (K)f 2 (a, 0) dt da dO
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IV.5.2. Overall ensemble averaged effective elastic moduli

We assume that statistical homogeneity holds. Therefore, the volume average is equal to the

ensemble average. Accordingly, the ensemble-volume averaged microcrack-induced compliances

take the form
.,- /vI':'e•e-•g K dý d<, <d

E 7r _Af E + (54)
(S*2) (1 rv)~jj lvri g.Kcdd

--=7 fAT •-g fe I ) d a• d< O

where w = 2 denotes the microcracks density parameter. Note that (So) iepresents the first-order

effects due to the presence of microcracks. Microcrack interaction effects are represented by (S-2)

which is of the second-order in w. It is emphasized that our second-order compliance formulation

is completely different from the dubious second-order stiffness formulation proposed by Hudson.

Following the Voigt's notation for strains, the ensemble-volume averaged overall constitutive

equation is
(S)()

where e = (co,, c;,, 2c1)Ty. The overall ensemble-volume averaged compliance consists of three

components:

(S) = S' + (S-) + (S*2) (56)

in which, since the solid is assumed to be isotropic linear -lastic, the elastic compliance is

(I -- -V 1-v 0 (57)0 0 0 1

Remark 5.2.1: The effective properties normally relate the average strains with the average average

stresses or mathematically, (e) = (S) • (To). However, in Eq. 55, the relations between the average

strains and the far field applied stresses are established. This defines a set of slightly different

effective properties. In case that the average stresses are very close to the far filed applied stresses

(oa' _ (o,)), the two definitions are equivalent. I
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IV.6. Some numerical examples

For simplicity, all microcracks are assumed to be of equal size and uniformly distributed in

locations. Legendre polynomials of the fourth order are adopted as base functions. The number N

in Eq. (9) is therefore set to 4. Twenty unknowns are solved from twenty equations for each two-
crack interaction problem. Two categories of problems with different orientation distributions are

considered. In the first category, all microcracks are assumed to be alinged (parallel) yet randomly

located. The compliance matrix due to the presence of microcracks isI / 0 0]
(S1)= 1 2rw[0 1 (58)

which is in consistent with the Taylor's model given by Eq. (48). On the other hand, only two

components in the 3 by 3 microcrack-interaction induced compliance matrix are non-zero:

--- -rt2 r 0 (59
(S*2 ) E 7W 0 r 0 (59)

[00 rzl

The constants r, and r 2 are given in Table 8 for two cases with and without stress projections.

To ensure that no microcracks intersect each other, a small elliptical probabilistic region surround-

ing a microcrack is excluded when performing the numerical Gauss integration. Major axis of the

elliptical probabilistic region coincides the crack line. The lengths of major axes for all computa-

tions are twice the crack size. The parameter h is defined as the ratio of minor axis to the crack

size. See Figure 5 for a schematic illustration. A smaller h value implies that stronger interacting

microcracks are allowed to appear in the neighborhood of a given microcrack.

Table 8. Results for aligned microcracks by using the fourth order Legendre polynomials.

r1 _ __ _ _ __ _ _ r2

h No Projection Exact Projection No Projection Exact Projection

2.0 1.253 1.253 0.489 0.489

1.5 0.721 0.721 0.572 0.572

1.0 0.248 0.248 0.618 0.618

0.5 -0.006 -0.006 0.528 0.528

Randomly oriented and located microcracks are considered in the second category of examples.

Much more computational efforts are required in these cases.

( - 7r[0 1 0 (60)12 0
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Table 11. Results for microcracks with random orientation by using the center point.

S1 _2 83

h No Exact No Exact No Exact
Projection Projection Projection Projection Projection Projection

2.0 3.685 3.497 0.405 0.364 6.559 6.265

1.75 3.443 3.928 0.236 0.430 6.411 6.995
*1.5 3.279 4.487 0.063 0.509 6.432 7.956

There are three non-zero independent components in the microcrack-interaction induced compli-

ance: 2 rs S2

(S2* =1- rEW2 S1 • 0 (61)
0 0 S3

Since the orientations of the microcracks are random and the original material is isotropic, the

overall compliance should be isotropic. In this case, the three components of the overall compliance
matrix Eqs. (57), (60), and (61) are all isotropic. Therefor, the property of isotropy is preserved

in the ensemble-volume averaging process. Numerical results of sl, s2, and S3 for cases with and

without the operation of stress projection are shown in Table 9.

Table 9. Results for microcracks with random orientation by using the fourth order Legendre.

_1 ,S2 83

h No Exact No Exact No Exact

Projection Projection Projection Projection Projection Projection

2.0 1.036 1.036 0.014 0.014 2.046 2.046
1.75 -0.364 -0.364 -0.257 -0.257 1.243 1.243
1.5 -1.098 -1.098 -0.573 -0.573 0.408 0.408

As a comparison, Tables 10 and 11 display the results for the two categories by using only the

crack-center points approximations [see Ju and Chen (1991 a)].

Table 10. Results for aligned microcracks by using the center point interaction.

__ 1 rr 2

h No Projection Exact Projection No Projection Exact Projection

2.0 1.173 1.116 0.481 0.447

1.0 0.364 0.022 0.686 0.542
0.5 0.640 -0.398 0.688 0.372
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From Tables 8-11, we observe that there is no difference on the overall compliances with

or without the stress projection procedure when the fourth order Legendre family is employed to

approximate the interactions. It suggests that the fourth-order Legendre approximation itself is

accurate enough so that a further stress projection dose not affect the results. On the other hand,

center point interaction approximation appears to be less accurate. Different results are obtained for

the two categories with or without a stress projection. It is observed that the column rl in Table 8

exhibits a decrease as h becomes smaller. Since microcracks are aligned in this case, a decrease

in the h value allows more interaction effects from the random second crack which is likely to be

approxinqately stacked on top of the given first crack. As mentioned in Section 2, stacked cracks

tend to interact against each other. A shielding effect which decreases the value of ri should be

expected. Therefore, the trend in the r, column in Table 8 is rational.
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IV.7. Conclusions

Accurate microcrack interaction method is incorporated into the framework of statistical mi-

cromechanical model to estimate the effective elastic moduli of brittle solids. A linear system of

equations is obtained through the numerical function approximation method by using the family

of orthogonal base functions. The proposed method is capable of solving the problems of very

strongly interacting microcracks. Higher accuracy is achieved by increasing the order used in the

approximation and solving the resulting larger system of equations. The system of eq..zions for

many-microcrack interaction problems can be constructed in a similar manner.

Complex stress potentials are shown to be a useful tool for the crack-interaction and cornpli-

ance problems. Based on the single crack stress potentials corresponding to concentrated loads,

relevant quantities such as stresses, strains, displacements and complainces are derived for any

arbitrary loadings. Simple and useful results are obtained for the special cases of polynomial load-

ings. Extensive numerical computations are required for the overall ensemble-volume averaged

elastic moduli. Numerical examples show that the fourth order Legendre approximation is accu-

rate enough so that further stress projection is not necessary. However, the stress projection should

be applied to improve the accuracy if center-point interaction approximation is used.

0
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IV.9. Figure captions

Figure 1. Coordinate systems for two microcracks.

Figure 2. Three cases of two-crack interaction configurations.

Figure 3. A single crack subjected to a pair of concentrated normal and shear loads.

Figure 4. Symmetry and anti-symmetry for normal and shear loadings.

Figure S. Active integration domain.

Figure 6. Four cases of microcrack configurations.
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